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Abstract— The availability of large, inexpen-

sive memory has made it possible to realize nu-

merical functions, such as the reciprocal, square

root, and trigonometric functions, using a look-

up table. This is much faster than by software.

However, a naive look-up method requires unrea-

sonably large memory. In this paper, we show the

use of a look-up table (LUT) cascade to realize a

piecewise linear approximation to the given func-

tion. Our approach yields memory of reasonable

size and significant accuracy.

1 Introduction

Iterative algorithms have often been used to com-
pute trigonometric functions like sin(x) and cos(x).
Such algorithms are appropriate for hand calcula-
tors [8], where the input time by a human is much
greater than the computation time. For example, the
CORDIC (COordinate Rotation DIgital Computer)
[1, 15] algorithm achieves accuracy with relatively
little hardware by iteratively computing successively
more accurate bits using a shift and add technique.
This is slow compared to table lookup, in which an ar-
gument x is encoded as an n-bit number that is used
as an address for f(x) in memory. The computation
time, in this case, is small and equal to one memory
access. However, a naive table lookup can involve
huge tables. For example, if x is represented as a 16
bit word and the results are realized by an 8-bit word,
there are 8× 216 = 219 bits total, a large number. In

addition, there is much redundancy of stored values,
as higher order bits of the stored values are the same
for nearby addresses. This has motivated the search
for methods to achieve the high speed of table lookup
with memories of reasonable size.

Hassler and Takagi [4] studied the problem of re-
ducing the large size of a single lookup table by using
two or more smaller lookup tables. Their approach
applies to functions that can be represented as a con-
verging series and uses the Partial Product Array
(PPA), formed by multiplying together the various
bits of the input variable x.

Stine and Schulte [13, 14] propose a technique that
is based on the Taylor series expansion of a differ-
entiable function. The first two terms of the expan-
sion are realized and added using smaller lookup ta-
bles than needed in the naive method. Schulte and
Swartzlander [12] consider algorithms for a family of
variable precision arithmetic function generators that
produce an upper and lower bound on the result, in
effect carrying along the range over which the func-
tion is accurate. These algorithms have been simu-
lated in behaviorial level VHDL.

Lee, Luk, Villasenor, and Cheung [6, 7] have pro-
posed a non-uniform segmentation method for use in
computing trigonometric and logarithmic functions
by table lookup. Their algorithm places closely-
spaced points in regions where the change in function
value is greatest. However, they used an ad hoc cir-
cuit to generate the non-uniform segmentation, and
the segments were not optimized to the given func-
tion.
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Rather than an ad hoc choice for this circuit, we
propose a circuit, called a segment index encoder,
that is specifically designed for the function. Toward
this end, we propose an algorithm that derives a near-
optimal segmentation intended to minimize the ap-
proximation error. Then, we show how to design a
LUT cascade [5, 9, 10, 11] to implement the segment
index encoder. The advantage of our approach is that
approximations are more accurate over a wider class
of functions.

To illustrate this, we analyze a wider class of func-
tions, extending to sigmoid and entropy functions.
Our approach can be applied to elementary func-
tions (including trigonometric functions, transcen-
dental functions, and the power function), and to
non-elementary functions (including the normal dis-
tribution and elliptic integral function). We do not
require a converging series for the realized function,
as in [4]. Further, we do not require that the func-
tion be differentiable, as in [13, 14]; rather, it can be
applied to functions that are piecewise differentiable,
such as the sawtooth function.

2 The Problem

We could represent f(x) in a single memory, where
x is applied as an address, and the memory con-
tents represents a binary value for f(x). Instead, we
choose to find a piecewise linear approximation to
f(x), where each segment is represented as c1x + c0.
In this case, we require a segment index encoder that
converts the 16 bit representation of x into an q bit
code that is the segment index. This is then applied
to a much smaller memory that produces binary num-
bers for c1 and c0. This scheme requires a multiplier
that computes c1x and an adder that adds c0 to c1x
to form f(x).

There are two important parts to this. First, we
need a segmentation of f(x) that minimizes the error
caused by representing a general function as a lin-
ear function c1x + c0. Second, we need a compact
realization of the segment index encoder.

Consider the segmentation problem. Fig. 1 shows
MATLAB’s ’humps’ function
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Figure 1: Segmentation of MATLAB’s humps func-
tion.

f(x) =
1

(x − 0.3)2 + 0.3
+

1
(x − 0.9)2 + 4

− 6, (1)

and a piecewise approximation for it.

There are 32 segments. The maximum absolute er-
ror over all segments is small, 0.26557, and the error
within each segment is approximately uniform. That
is, each segment produces an error close to 0.26557.
Notice that small widths are needed around the left
hump and to a lesser extent around the smaller right
hump. These small segments produce nearly the
same error as the large segments in the approximately
linear portion of the curve on the right. The problem
of generating near-optimum segmentations of func-
tions is discussed in Section 4.

The second problem of designing the segment in-
dex encoder is complicated by the fact that different
functions require different segmentations. In an im-
plementation of a segmentation of the function of Fig.
1, the encoder converts a 16-bit input (value of x) into
a 5-bit output (segment number), and is potentially a
large circuit. In the next section, we present a design
method for the encoder using the LUT cascade, such
that the resulting circuit is small.
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3 Architecture for Numerical
Function Generator

3.1 Overview

Table 1 shows the notation used in this paper. The
first row shows the real-valued single-variable func-
tion f(x) that our circuit approximates, where x is
the independent variable. The second row shows the
fixed-point numerical representation of x and f(x).
To illustrate our approach, we have chosen to rep-
resent x in 16 bits and f(x) in 8 bits. That is, we
use f(x) and x to denote a real-valued function and
its independent variable, as well as their fixed-point
representations. Context will determine which mean-
ing is intended. We use X and F (X) to denote the
ordered set of logic variables and logic functions repre-
senting fixed-point numbers x and f(x), respectively.
That is, F (X) is a multiple-output function on X. It
is the logic function our proposed circuit implements.

Table 1: Notation

Type Ind. Func- Examples #
Var. tion Bits

real- x x = π/4 = 0.785398
valued f(x) cos(x) = 0.707107
fixed- x .1100100100001111 16
point f(x) .10110101 8
logic � 1100100100001111 16

� (�) 10110101 8

Fig. 2 shows the architecture used to implement
the function. The independent variable x labels the
16 binary inputs that drive the Segment Index En-
coder. The Encoder, in turn, produces the segment
number in which this value of x is located. The seg-
ment number is applied to the Coefficients Table,
which produces the slope c1 and the intercept c0 for
the linear approximation c1x + c0 to f(x) in this in-
terval. A multiplier is needed to compute c1x and
an adder is needed to compute the sum in c1x + c0.
The logic variables from the adder, labelled by f(x),
form the approximation to the function. f(x) is rep-
resented by 8 bits.

f(x)

x

Segment

Index Encoder 

Coefficients

Table

Multiplier

Adder

Segment

Number

c1 x c0

Figure 2: Architecture For the Numerical Function
Generator.

3.2 Segment Index Encoder

The segment index encoder realizes the segment index
function g(x) : [0, 1−216] → {0, 1, 2, . . . , p−1} shown
in Table 2. It assumes 0 ≤ x < 1.0. Suppose that x is
represented in 16 bits, and we want to approximate
f(x) using p segments. The segment index encoder,
therefore, has 16 inputs and q = �log2 p� outputs.
The success of this approach depends on finding a
compact circuit for the segment index encoder.

Table 2: Segmentation Index Function

Input Range Segment #
0 ≤ x < s0 0
s0 ≤ x < s1 1
s1 ≤ x < s2 2

sp−1 ≤ x < 1 − 2−16 p − 1

We propose the use of a LUT cascade
[5, 9, 11] to realize the segment index encoder,
as shown in Fig. 3. This maps X to S, where
S= (sq−1, sq−2, . . . , s0) represents the segment
number sq−12q−1 + sq−22q−2 + . . . + s020. The LUT
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Cell 2 Cell cCell 1 

Segment Number

X

Figure 3: LUT Cascade Realization of the Segment
Index Encoder.

cascade realizes the segment index function shown
in Table 2. This function is monotone increasing.
That is, as we scan x in ascending order of values,
the segment number never decreases. This property
results in a LUT cascade with reasonable size, as we
show in Lemma 1. We measure size by the number
of bits of memory needed to store the cell’s function
over all cells in the LUT cascade. The size, in turn, is
dependent of the number of rails or interconnecting
lines between cells. This number can be determined
from the decomposition chart of the function. This
chart partitions the variables into two subsets. One
subset corresponds to the variables on the input side
of a set R of rails and the other subset corresponds
to the variables on the output side of R.

Lemma 1: Let (Xhigh,X low) be an ordered par-
tition of X into two parts, where Xhigh =
(xn−1, xn−2, . . . , xn−k) represents the most sig-
nificant k bits of x (xhigh), and X low =
(xn−k−1, xn−k−2, . . . , x0) represents the least signifi-
cant n − k bits of x (xlow). Consider the decomposi-
tion chart of g(X) (representing a monotone increas-
ing numerical function g(x)), where values ofX low la-
bel the columns, values of Xhigh label the rows, and
entries are values of the p-valued segmentation func-
tion, s. Its column multiplicity is at most p.

(Proof) Assume, without loss of generality, that both

the columns and rows are labelled in ascending or-
der of the value of xlow and xhigh, respectively. Be-
cause g(x) is a monotone increasing function, in scan-
ning left-to-right and then top-to-bottom, the values
of g(x) will never decrease. An increase causes two
columns to be distinct. Conversely, if no increase oc-
curs anywhere across two adjacent columns, they are
identical.

In a monotone increasing p-valued output function,
there are p−1 dividing lines among 2n output values.
Dividing lines among values divide columns in the
decomposition chart. Thus, there can be at most p
distinct columns.

The significance of Lemma 1 is that a column
multiplicity of p implies that there are at most
�log2 p� lines between the block associated with
X low and Xhigh. A low value, as suggested in
Lemma 1, implies the individual cells have a small
number of rails (interconnecting lines). As a result,
the individual cells are reasonably simple. A formal
statement of this is

Theorem 1: If the segment index function g(x)
maps to at most p segments, then there exists a LUT
cascade realizing g(x), where the number of rails is
at most �log2 p�.

As shown in Fig. 3, the outputs of each cell in the
LUT cascade are partitioned into two parts, those
that drive the next cell and those that are part of
the segment number. For some cells, there may be
no outputs that are part of the segment number. In-
deed, our experience is that leftmost cells tend not to
produce segment number bits, and most such outputs
come only the right cells. In the example we describe
in Section 5, all segment number bits come from the
single rightmost cell.

4 Segmentation Algorithm

Our approach to segmentation is based on the
Douglas-Peucker [3] polyline simplification algo-
rithm. This algorithm finds a piecewise linear ap-
proximation to a function f(x) recursively. First, it
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approximates f(x) as a single straight-line segment
connecting the end points. Then, it finds a point P on
the curve for f(x) that is farthest from the straight-
line segment on a line perpendicular to the segment.
It then creates two straight-line segments joined at
P connecting to the end points. It proceeds in this
manner, stopping when the maximum distance from
the straight-line segment is below a given threshold.
The Douglas-Peucker algorithm is used in rendering
curves for graphics displays. For our purposes, how-
ever, we seek a piecewise linear approximation that
minimizes the approximation error. That is, if fp(x)
is the piecewise linear approximation to f(x), where
p is the number of segments, we seek to minimize
|f(x) − fp(x)|. Thus, we have modified the Douglas-
Peucker algorithm by replacing the perpendicular dis-
tance criteria with a minimum error criteria.

We have applied the modified Douglas-Peucker al-
gorithm to the functions in Table 4. This shows
common numeric functions, including transcendental
functions, the entropy function, the sigmoid function,
and the Gaussian function. The interval of x values
is shown using the [a, b) notation, where a ≤ b. Here,
[a means the interval includes the smallest value a,
and b) means the interval excludes the largest value b.
In the binary number representation of x, we enforce
b) by restricting the largest value of x to be b − 2α,
where α is the contribution of the least significant
bit.

5 Example Design

In this section, we discuss in detail the design of the
function generator for one function, cos(x). Then, we
summarize key features of the designs for all functions
implemented.

For the cos(x) function, the input X has 16 vari-
ables and represents x to a precision of 2−16 �
1.5 × 10−5. Using the Douglas-Peucker algorithm,
we determined a 9-element segmentation as shown in
Table 3

We sketch briefly the BDD design process de-
scribed in [9]. Fig. 4 shows the BDD as a trian-
gle. For each variable, there is an associated width
that is shown next to the BDD. In this BDD, let y1

Input/

Output

Width No.

Rails

x0 2

x1 4

x2 7

x3 7

x4 8

x5 9 4

x6 9

x7 9 4

x8 9

x9 9 4

x10 9

x11 9 4

x12 9

x13 9

s3 8

s2 4

s1 2

s0 1

Cell 5 

Cell 4 

Cell 3 

Cell 2 

Cell 1 

0 1

Figure 4: BDD for the Segment Index Encoder for
the cos(x) Function.

be the top variable, y2 the next variable, etc.. The
width of a BDD at level k is the number of edges
from variables labelled yk down variables lower in the
BDD, where edges incident to the same lower variable
counted as 1. An order top-to-bottom that produced
small widths is x0, x1, ... x13, s3, s2, s1, and s0. Note
that only the end points of Table 3 need be used and,
for these points, the two most significant bits are al-
ways 0. Therefore, only 14 bits (x0, x1, ... and x13)
of X are used.

Note that the width never exceeds 9. Thus, from
Theorem 3.2, any partition yields a LUT cascade with
at most 4 rails. The third column of Fig. 4 shows a
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Table 3: Segmentation for the cos(x) Function.

Segment Begin Point Segment End Point Segment
in Decimal in Binary in Decimal in Binary Number

0.000000 0.000 0000 0000 0000 0.053314 0.000 0110 1101 0011 0000
0.053345 0.000 0110 1101 0100 0.107300 0.000 1101 1011 1100 0001
0.107330 0.000 1101 1011 1101 0.162994 0.001 0100 1101 1101 0010
0.163025 0.001 0100 1101 1110 0.219696 0.001 1100 0001 1111 0011
0.219727 0.001 1100 0010 0000 0.277740 0.010 0011 1000 1101 0100
0.277771 0.010 0011 1000 1110 0.307800 0.010 0111 0110 0110 0101
0.307831 0.010 0111 0110 0111 0.339386 0.010 1011 0111 0001 0110
0.339417 0.010 1011 0111 0010 0.406799 0.011 0100 0001 0010 0111
0.406830 0.011 0100 0001 0011 0.500000 0.100 0000 0000 0000 1000

repeated partitioning that yields four instances of a
set of 4 rails. These separate 5 cells in the cascade
that are used to realize the given function. Each has
6 inputs and 4 outputs. The resulting circuit is shown
in Fig. 5.

5.1 Memory Size Needed For the
cos(πx) Function

We can compare this realization with the naive
method on the basis of the number of bits of mem-
ory required. That is, with the naive method, there
is a large memory with 216 locations, each produc-

Cell 1 

x0…x5

Cell 2

x6x7

Cell 3 Cell 4

X

x8x9 x10x11

Cell 5

Segment

Index

x12x13

s0s1s2s3

Figure 5: Segment Index Encoder for the cos(x)
Function Realized by an LUT Cascade.

ing 8 bits, for a total of 219 = 524, 588 bits. With
the LUT cascade realization, there are 5 cells each
with a memory of 4 × 26 = 256 bits for a total of
5 × 256 = 1280 bits. The coefficients memory has a
4 bit address and stores 9 segment coefficient pairs.
The two coefficients, c1 and c0, are each represented
in 10 bits, for a total of 9 × (10 + 10) = 180 bits.
Totalling the LUT cascade and coefficients memory
yields 1280 + 180 = 1460 bits. It should be noted
that the approximation method we propose requires
a LUT cascade, a multiplier and an adder that is
not present in the naive realization, and this con-
tributes delay. However, a larger memory is likely to
be slower than the much smaller memory required in
the approximation approach. The memory reduction
is significant, slightly more than 1/300 of the memory
size for the naive method!

5.2 Summary of Memory Require-
ments For Numerical Functions

Table 4 summarizes the results of the design process
just described. This shows that the sizes across the
various functions are small. They range from less
than 100 bits to approximately 4000 bits. In forming
the LUT cascades, we did not minimize the mem-
ory. For some functions, the minimum memory cor-
responded to a cascade with 9 cells.

In Table 4, the functions listed all have an input
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value for x of 16 bits. However, over the range of
values specified in Table 4, the most significant bit
is constant, and, in the case of the tan(πx) function,
the most significant two bits are constant. Thus, in
comparing with the naive method, one must consider
a memory of size 215 or 214, as appropriate.

There is some correlation between the total mem-
ory size, as shown in the rightmost column, and the
number of segments, as shown in the fourth column
from the left. Enlarging the domain increases the
number of segments and thus the memory size. Be-
sides the domain size, the memory size is dependent
on the function realized. For example, the Gaussian
distribution (last line of Table 4) has surprisingly low
memory requirements.

6 Summary and Conclusions

We have shown a design method for circuits that
computes elementary and non-elementary functions
quickly and accurately. It is based on the piecewise
linear approximation of the function. The effective-
ness of this approach lies in two contributions: 1. an
approximation algorithm of high accuracy and 2. the
use of a LUT cascade in a compact realization of the
segment index encoder. The latter converts a binary
representation of x into a binary representation of the
segment number. Each segment number is an address
to a reasonably small memory, which provides the co-
efficients of the corresponding segment.

The previous approach [6, 7] used an ad hoc cir-
cuit to generate segmentation. So, such a method is
only useful for a limited class of functions. However,
our approach uses an LUT cascade, a universal cir-
cuit that generates optimized segmentation for wider
classes of functions.

Extensions of this work include the use of: 1.
a scaling factor (shifter) for functions with a large
dynamic range, 2. a higher-order approximations
(
∑m

i=0 cix
i) to reduce the approximation error in the

segment, and 3. improved segmentation algorithm.
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