
Characterizing Polynomial Arithmetic with Stochastic
Circuits⋆

Patrick Holec1, Weikang Qian2, Marc Riedel3, and
Ivo Rosenberg4

1Department of Biological Engineering,
Massachusetts Institute of Technology, Cambridge,
MA, USA , Email: pholec@mit.edu
2University of Michigan-Shanghai Jiao Tong
University Joint Institute, Shanghai Jiao
Tong University, Shanghai, China , Email:
qianwk@sjtu.edu.cn
3Department of Electrical and Computer
Engineering, University of Minnesota, Twin Cities,
Minneapolis, MN, USA, Email: mriedel@umn.edu
4Mathematics and Statistics, University of
Montreal, Montreal, Quebec, Canada

Abstract In this work, we outline a novel algorithm for the computation of real
coefficient polynomials using stochastic circuits. Also, we prove that there exists
restricted regions in polynomial space that no stochastic circuit can compute.
Through the use of the fundamental theorem of algebra, we can obtain a finite
set of roots r1, . . . , ri ∈ C for a target polynomial Pi(t) of the ith degree. If a
polynomial contains roots exclusive to the accessible regions of the complex plane,
a stochastic circuit is guaranteed to exist which represents the target polynomial
as A ·P (t) where 0 < A < 1 or, in certain cases, A = 1. When these solutions exist,
the number of logic gates and the overall delay of the circuit is significantly less
than those described by previous solutions to this problem.

Keywords stochastic computing · probabilistic circuits · polynomials

1 Introduction

Before explaining the context and motivation for the mathematics in this paper,
we first give a brief review of digital circuits. Then we introduce the reader to
an alternative paradigm for arithmetic with digital circuits called stochastic logic,
which is predicated on probability theory. Circuits designed with stochastic logic,

⋆ This work is submitted posthumously with Ivo Rosenberg as an author. It is based on
discussions with Ivo that transformed our thinking of this line of research, putting it on a firm
mathematical footing.



called stochastic circuits, compute polynomial functions. The main contribution of
this paper is to characterize regions of polynomial space that are computable with
stochastic circuits.

1.1 Digital Circuits

Conceptually, a digital circuit consists of gates connected by wires. Each gate has
one or more inputs and a single output. The symbols for common gates are shown
in Figure 1. A bubble is used to indicate that an input or output is negated, as
illustrated in Figure 2.

A gate implements a Boolean function, i.e., a mapping from Boolean inputs to
a Boolean output,

g : {0, 1}k → {0, 1}.

For instance, an XOR gate performs the mapping

XOR(y1, . . . , yk) =

{
1 if the number of 1’s among y1, . . . , yk is odd

0 otherwise.

The set of inputs to a gate are called its fan-in set. When we say a “fan-in k”
gate, we mean a gate with fan-in set of cardinality k. The set of gates that are
attached to a gate output are called its fan-out set. The truth tables for fan-in
two AND, OR, NAND, NOR, and XOR gates, as well as a fan-in one NOT gate,
are shown Table 1. The gates NAND and NOR are AND and OR gates with the
output inverted, respectively.

Table 1: Truth table for common gates.

x y AND(x, y) OR(x, y) NAND(x, y) NOR(x, y) XOR(x, y)
0 0 0 0 1 1 0
0 1 0 1 1 0 1
1 0 0 1 1 0 1
1 1 1 1 0 0 0

x NOT(x)
0 1
1 0

A digital circuit is built by attaching gates to the outputs of other gates, so
composing the gate functions. An example of a circuit is shown in Figure 3. In
general:

– A circuit accepts values x1, . . . , xm, ranging over {0, 1}, called the primary

inputs. Each primary input is fed into one or more gate inputs.
– The gates in the circuit produce internal values z1, . . . , zn ranging over {0, 1}.
– A subset of the set of internal values {f1, . . . , fk} ⊆ {z1, . . . , zn} are designated

as the primary outputs.



A circuit computes Boolean functions by mapping primary inputs to primary
outputs, through the composition of the Boolean functions that the gates perform:

∀i fi : {0, 1}m → {0, 1}.

(Computer engineers being cavalier about such things, we often abuse the notation,
using the same symbols fi to denote Boolean values at the primary outputs as well
as the functions that compute these values.)

The delay of circuit is the longest path from a primary input to a primary
output, measured in terms of the number of gates along that path. We generally
exclude negations (so bubbles in our diagrams) from this count, considering them
part of the corresponding gate operations. For instance, the delay of the circuit in
Figure 3 is 2.

Throughout this paper, the discussion pertains to combinational circuits. Such
circuits have no loops and no reconvergence:

– By loop, we mean a path along wires and through gates from a gate output
back to itself.

– By reconvergence, we mean a path along wires and through gates that splits

and then rejoins itself (without necessarily forming a loop).

Stated more simply, here we limit ourselves to circuits that are trees (where wires
represent edges and gates nodes in a graph). Each primary output is the root of a
tree, and each primary input a leaf.1

1.2 Stochastic Circuits

Humans are accustomed to counting in a positional number system – decimal
radix. Nearly all computer systems operate on another positional number system
– binary radix. From the standpoint of representation, such positional systems are
compact: given a radix b, one can represent bn distinct numbers with n digits.
Each choice of the digits di ∈ {0, . . . , b − 1}, i = 0, . . . , n − 1, results in a different
number N in [0, . . . , bn − 1]:

N =
n−1∑
i=0

bidi.

However, from the standpoint of computation, positional systems impose a burden:
for each operation such as addition or multiplication, the value must be “decoded,”
with each digit weighted according to its position. The result must be “re-encoded”
back in positional form.

Consider instead digital computation that is based on a stochastic representa-
tion of data. A number x (0 ≤ x ≤ 1) corresponds to a sequence of random bits.
Each bit has probability x of being one and probability (1 − x) of being zero. In
the serial model, the bits stream on a single wire. In the parallel model, random

1 We note that computer engineers generally define combinational circuits as those that
have no memory, meaning the primary outputs depend only on the primary inputs, not on
prior values stored on wires in the circuit. They generally allow for combinational circuits to
have reconvergent paths but not to have loops. Confusingly, we have advocated for the design
of combinational circuits with loops [8]. For simplicity, here we will use the term combinational
to mean having a tree topology, so having no reconvergence and no loops.



values are assigned to wires in a bundle. When streaming, the computation is
probabilistic in time, shown in in Figure 4(a); when in a bundle, the computa-
tion is probabilistic in space, shown in 4(b). All of our examples consist of serial
computation. However, all the concepts apply equally to parallel computation.

There has been widespread interest in design digital circuits that compute
based on this representation [2,3,4,7], called stochastic circuits. We point to [1],
a survey of work in the area. The appeal of this approach stems from the fact
that complex functions can be computed with very simple circuits. Consider the
operation of multiplication: its implementation consists of a single AND gate. As
illustrated in Figure 5, the inputs are two independent input stochastic bit streams
a and b. The number represented by the output stochastic bit stream c is

c = P (C = 1) = P (A = 1 and B = 1)

= P (A = 1)P (B = 1)

= a · b.
(1)

The probability of getting a one at the output, P (C = 1), is equal to the probability
of simultaneously getting ones at the inputs, namely, P (A = 1) times P (B = 1). So
the AND gate multiplies the two values represented by the stochastic bit streams,
provided they are random and independent. (Multiplication here means computing
a fraction of a fraction.)

Multiplication is the cannonical example, but research by computer engineers
has shown that many functions of interest can be computed with stochastic circuits
having remarkably few gates. For instance, Taylor series expansions of polynomial
approximations to trigonometric functions can be computed with approximately
a dozen gates [3].

1.3 Computing Polynomial with Stochastic Circuits

Consider basic logic gates. Table 2 describes the functions that they implement
given stochastic inputs. These are all straight-forward to derive algebraically. For
instance, given a stochastic input x representing the probability of seeing a 1 in a
random stream of 1’s and 0’s, a NOT gate implements the function

NOT(x) = 1− x. (2)

Above, we say that given inputs x and y, an AND gate implements the function:

AND(x, y) = xy. (3)

An OR gate implements the function:

OR(x, y) = x+ y − xy. (4)

An XOR gate implements the function:

XOR(x, y) = x+ y − 2xy. (5)

It is well known that any Boolean function can be expressed in terms of AND

and NOT operations (or entirely in terms of NAND operations). Accordingly, the



Table 2: Stochastic function implemented by basic logic gates.

gate inputs function
NOT x 1− x
AND x, y xy
OR x, y x+ y − xy

NAND x, y 1− xy
NOR x, y 1− x− y + xy
XOR x, y x+ y − 2xy
XNOR x, y 1− x− y + 2xy

function of any circuit can be expressed as a nested sequence of multiplications and
(1 − x) type operations. It can easily be shown that this nested sequence results
in a polynomial function.

We will make the argument based upon truth tables. Here we will consider
only univariate functions, that is to say stochastic logic that receives multiple
independent copies of a single variable t. (Technically, t is the Bernoulli coefficient
of a random variableXi, where t = [Pr(Xi = 1)]. ) Please see [5] for a generalization
to multivariate polynomials.

Consider a combinational circuit computing a function f(X1, X2, X3) with the
truth table shown Table 3. Now suppose that each variable has independent prob-
ability t of being 1:

[Pr(X1) = 1] = t, (6)

[Pr(X2) = 1] = t, (7)

[Pr(X3) = 1] = t. (8)

The probability that the function evaluates to 1 is equal to the sum of the proba-
bilities of occurrence of each row that evaluates to 1. The probability of each row,
in turn, is obtained from the assignments to the variables, as shown in Table 4.
Summing up the rows that evaluate to 1 in this example, we obtain

(1− t)2t+ (1− t)t2 + t(1− t)t+ t2(1− t) + t3 (9)

= (1− t)2t+ 3(1− t)t2 + t3 (10)

= t+ t2 − t3. (11)

Generalizing from this example, suppose that we are given any circuit with n

inputs that each evaluates to 1 with independent probability t. We conclude that
the probability that the output of the circuit evaluates to 1 is equal to the sum of
terms of the form ti(1− t)j , where 0 ≤ i ≤ n, 0 ≤ j ≤ n, i+ j = n, corresponding
to rows of the truth table of the circuit that evaluate to 1. Expanding out this
expression, we always obtain a polynomial in t. Since the stochastic inputs and
outputs are probabilities, this polynomial function maps inputs from the unit
interval [0, 1] to outputs in the unit interval [0, 1].

So, in a stochastic context, a circuit computes a polynomial function. The con-
verse question is much more challenging: given a target polynomial function, can
we synthesize stochastic logic to compute it? The answer is a qualified yes: we have
proved that there exists a circuit that computes any polynomial function that maps
the unit interval to the unit interval [6]. So the characterization of stochastic logic



Table 3: Truth table for a combinational circuit.

X1 X2 X3 f(X1, X2, X3)
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Table 4: Probabilities of each row in Table 3, assuming each variable has inde-
pendent probability t.

X1 X2 X3 Probability of Row f(X1, X2, X3)
0 0 0 (1− t)3 0
0 0 1 (1− t)2t 1
0 1 0 (1− t)t(1− t) 0
0 1 1 (1− t)t2 1
1 0 0 t(1− t)2 0
1 0 1 t(1− t)t 1
1 1 0 t2(1− t) 1
1 1 1 t3 1

is complete. Our proof method is constructive: we describe a synthesis methodol-
ogy for polynomial functions that is general and efficient in terms of the number
of gates. Through polynomial approximations, it can also be used to synthesize
non-polynomial functions. For further details, the reader is referred to [3,4].

The answer above is a qualified “yes” because the prior method permits circuits
with reconvergence. The goal of this paper is to consider, from a theoretical and
mathematical point of view, the space of functions that can be computed using only
primitive operations (namely AND and NOT operations) with no reconvergence.
Note that our definition limits the space of circuits to a specific subset. However,
as shown below, this space is sufficient to represent most polynomial functions.

For what follows, we consider combinational circuits with random Boolean
variables as inputs. When we say a “probability”, we mean the probability of a
random Boolean variable being one. A “circuit branch” refers to any section of a
larger circuit that produces an output function that contributes to the formation
of the final output function.

The rest of the paper is organized as follows. Section 2 will describe some
basic concepts and facts. Section 3 will describe the main problems considered in
this work and the main results. Sections 4 and 5 give proofs of the main results
described in Section 3. To demonstrate applicability in stochastic circuit design, in
Section 6, we provide an implementation procedure and example for our method.
Lastly, in Section 7, we compare our method to previous techniques and discuss
the limitations of this framework.



2 Basic Concepts and Facts

This section first gives several definitions that will be used in the remainder of the
paper and then presents the fundamental theorem of algebra.

Definition 1 A gate is one of the two operations described below:

AND gate: AND(f(t), g(t)) = f(t) · g(t),

NOT gate: NOT(f(t)) = 1− f(t).

Inputs to these functions may be any finite combination of aforementioned gates, input

variable t, or constants zi ∈ [0, 1].

Definition 2 A circuit is a collection of gates connected in the form of a tree. It

has multiple inputs and a single output. Each input is assigned with an independent

random Boolean variable with either a variable probability t or a constant probability

zi ∈ [0, 1]. The circuit produces an output random Boolean variable, whose probability

is a real-coefficient polynomial P (t) with respect to the variable t. We say that the

circuit implements the polynomial P (t).

Theorem 1 Fundamental Theorem of Algebra. Given a real-coefficient polyno-

mial Pn(t) of degree n, there exist a multi-set of roots {r1, r2, . . . , rn} ∈ C such that

Pn (ri) = 0, where the multi-set may contain multiple roots of the same value.

The following corollary follows directly from the Fundamental Theorem of
Algebra.

Corollary 1 A given real-coefficient polynomial Pn(t) of degree n can be equivalently

expressed as:

Pn(t) = A ·
n∏

i=1

(t− ri),

where A is a scalar and {r1, r2, . . . , rn} forms the multi-set of roots of Pn(t).

In what follows, without loss of generality, we assume that the multi-set of roots
of a real-coefficient polynomial Pn(t) of degree n can be partitioned into a list of real
roots {r1, r2, . . . , rm} and a list of complex conjugate root pairs {(rm+1, rm+2), . . . ,
(rn−1, rn)}. By Corollary 1, we can also represent Pn(t) as follows:

Pn(t) = A∗ ·
m∏
i=1

P
{i}
1 (t) ·

(n−1)/2∏
i=(m+1)/2

P
{2i,2i+1}
2 (t), (12)

where A∗ ̸= 0 is a real scalar, P
{i}
1 (t) = Ai(t− ri) (i = 1, 2, . . . ,m) is a polynomial

of degree 1 with the root as ri, and P
{2i,2i+1}
2 (t) = A2i(t − r2i)(t − r2i+1) (i =

(m+ 1)/2, (m+ 3)/2, . . . , (n− 1)/2) is a polynomial of degree 2 with the roots as
the complex conjugate root pair r2i and r2i+1.



3 Problems and Main Results

The main research goal of this work is to find a method to synthesize a circuit to
implement a given polynomial. Of course, not all polynomials can be implemented
by a circuit. However, the following theorem shows a subset of polynomials that
can be implemented by a circuit.

Theorem 2 Given a polynomial Pn(t) represented in the form shown in Eq. (12), if

1. for each i = 1, 2, . . . ,m, there exists a circuit implementing the polynomial P
{i}
1 (t),

2. for each i = (m+1)/2, (m+3)/2, . . . , (n−1)/2, there exists a circuit implementing

the polynomial P
{i,i+1}
2 (t), and

3. A∗ ∈ [0, 1],

then Pn(t) can be implemented by a circuit.

Proof : Suppose that the above conditions are satisfied. For each 1 ≤ i ≤ m, let the

circuit implementing the polynomial P
{i}
1 (t) be Ci. For each (m+1)/2 ≤ i ≤ (n−

1)/2, let the circuit implementing the polynomial P
{i,i+1}
2 (t) be Di. Then, we can

build a circuit C that consists of the circuits C1, . . . , Cm, D(m+1)/2, . . . , D(n−1)/2,
a primary input I∗ of probability A∗, and a tree of AND gates that merges the
outputs of the circuits C1, . . . , Cm, D(m+1)/2, . . . , D(n−1)/2 and the primary input
I∗ into a single output. By the function of an AND gate, clearly, the probability
of the output is

A∗ ·
m∏
i=1

P
{i}
1 (t) ·

(n−1)/2∏
i=(m+1)/2

P
{2i,2i+1}
2 (t),

which equals Pn(t) according to Eq. (12). Thus, by construction, a circuit imple-
menting the polynomial Pn(t) exists. □

The above theorem shows a subset of polynomials that can be implemented
by a circuit, and its proof also shows a method to construct circuits for such
polynomials. In this work, we try to identify the subset of polynomials that satisfies

the conditions of Theorem 2. We note that for the polynomials P
{i}
1 (t) = Ai(t−ri)

and P
{2i,2i+1}
2 (t) = A2i(t−r2i)(t−r2i+1) in the decomposition form of Pn(t) shown

in Eq. (12), we have freedom to choose their constant factors Ai and A2i, and once
Ai’s and A2i’s are chosen, we can correspondingly adjust the constant factor A∗

in Eq. (12). Thus, the main problems become 1) identifying the set of real roots
so that for each root r in the set, there exists a circuit implementing a polynomial
of degree 1 with the root as r, and 2) identifying the set of complex conjugate
root pairs so that for each pair of roots r1 and r2 in the set, there exists a circuit
implementing a polynomial of degree 2 with the roots as r1 and r2. Alternatively,
we can state the problems as follows.

Problem 1 Given a real root r, decide if there exist a circuit C and a polynomial P1(t)
of degree 1 with the root as r, such that the circuit C implements P1(t). Moreover, if

they exist, give the circuit and the polynomial.

Problem 2 Given a complex conjugate root pair r1 and r2, decide if there exist a

circuit C and a polynomial P2(t) of degree 2 with the roots as r1 and r2, such that the

circuit C implements P2(t). Moreover, if they exist, give the circuit and the polynomial.



The main results for the above two problems are presented as two theorems
shown below.

Theorem 3 For a real root r, there exists a circuit implementing a polynomial of

degree 1 with the root as r if and only if r ≤ 0 or r ≥ 1.

Theorem 4 Let a region S of R2 be

S =
{
(a, b)|a > 0, a2 + b2 < 1

}
∪
{
(a, b)|a < 1, (a− 1)2 + b2 < 1

}
. (13)

For a pair of complex conjugate roots r1 = a + bi and r2 = a − bi, there exists a

circuit implementing a polynomial of degree 2 with the roots as r1 and r2 if and only

if (a, b) ∈ R2\S.

In what follows, we will first give constructive proofs of the “if” parts of Theo-
rems 3 and 4 in Section 4. Then, we will prove the “only if” parts of these theorems
in Section 5.

4 Constructive Proofs of the “if” Parts of Theorems 3 and 4

This section presents the constructive proofs of the “if” parts of Theorems 3 and 4.
In all subsequent figures, we use a dot to represent an inverter.

4.1 Constructive Proof of the “if” Part of Theorem 3

For the “if” part of Theorem 3, we have the following 2 cases corresponding to
r ≥ 1 and r ≤ 0, respectively.
Case 1. For r = a ≥ 1, the circuit shown in Fig 6A with constant z = 1

a ∈ [0, 1]
implements a polynomial of degree 1 with the root as r. The polynomial is:

P (t) = 1− zt = 1− 1

a
t = −1

a
(t−a). (14)

Case 2. For r = a ≤ 0, the circuit shown in Fig 6B with constant z = 1
1−a ∈ [0, 1]

implements a polynomial of degree 1 with the root as r. The polynomial is:

P (t) = 1− z (1− t) = 1−
(

1

1− a

)
(1− t) =

1

1−a
(t−a). (15)

4.2 Constructive Proof of the “if” Part of Theorem 4

For the “if” part of Theorem 4, we have the following 4 cases.
Case 3. For a pair of complex conjugate roots r1,2 = a± bi such that

a ≥ 1

2
and (a− 1)2 + b2 ≥ 1,



the circuit shown in Fig. 7A with the constants z1 = 2a
a2+b2 ∈ [0, 1] and z2 =

1
2a ∈ [0, 1] implements a polynomial of degree 2 with the roots as r1 and r2. The
polynomial is:

P (t) = 1− (z1t (1− z2t))

= 1−
(

2a

a2 + b2
t

(
1− 1

2a
t

))
=

1

a2 + b2
(t− (a+ bi))(t− (a− bi)).

(16)

Case 4. For a pair of complex conjugate roots r1,2 = a± bi such that

a ≤ 1

2
and a2 + b2 ≥ 1,

the circuit shown in Fig. 7B with the constants z1 = 2(1−a)
(1−a)2+b2 ∈ [0, 1] and z2 =

1
2(1−a) ∈ [0, 1] implements a polynomial of degree 2 with the roots as r1 and r2.

The polynomial is:

P (t) = 1− (z1(1− t) (1− z2(1− t)))

= 1−
(
2(1− a)(1− t)

(1− a)2 + b2

(
1− 1− t

2(1− a)

))
=

1

(1−a)2+b2
(t− (a+bi) )(t− (a−bi) ).

(17)

Case 5. For a pair of complex conjugate roots r1,2 = a± bi such that

a ≥ 1,

the circuit shown in Fig. 8A with the constants z1 = 2a−1
a2+b2 ∈ [0, 1] and z2 =

1
2a−1 ∈ [0, 1] implements a polynomial of degree 2 with the roots as r1 and r2. The
polynomial is:

P (t) = 1− z1 (1− (1− t) (1− z2t))

= 1− 2a− 1

a2 + b2

(
1− (1− t)

(
1− 1

2a− 1
t

))
=

1

a2+b2
(t− (a+bi) )(t− (a−bi) ).

(18)

Case 6. For a pair of complex conjugate r1,2 = a± bi such that

a ≤ 0,

the circuit shown in Fig. 8B with the constants z1 = 1−2a
(1−a)2+b2 ∈ [0, 1] and z2 =

1
1−2a ∈ [0, 1] implements a polynomial of degree 2 with the roots as r1 and r2. The
polynomial is:

P (t) = 1− z1 (1− t (1− z2 (1− t)))

= 1− 1− 2a

(1− a)2 + b2

(
1− t

(
1− 1

1− 2a
(1− t)

))
=

1

(1−a)2+b2
(t− (a+bi) )(t− (a−bi) ).

(19)



Combining the above 4 cases, we conclude that for a pair of complex conjugate
roots r1,2 = a± bi, if (a, b) ∈ R2\S, where S is given by Eq. (13) and illustrated in
Fig. 9, then there exists a circuit implementing a polynomial of degree 2 with the
roots as r1 and r2.

Note that Case 5 and Case 6 share complex plane coverage with Case 3 and
Case 4, respectively. If a root in these regions is required, Case 3 and Case 4 are
considered better options, as these circuits have a shorter circuit delay, or number
of logic gates separating the earliest inputs with the output function.

5 Proofs of the “only if” Parts of Theorems 3 and 4

This section presents the proofs of the “only if” parts of Theorems 3 and 4.

5.1 Proof of the “only if” Part of Theorem 3

To prove the “only if” part of Theorem 3, we only need to prove the following
claim: for a real root r ∈ (0, 1), there does not exist a polynomial of degree 1
with the root as r such that it can be implemented by a circuit. In fact, for a
real root r ∈ (0, 1), a polynomial of degree 1 with the root as r is of the form
P1(t) = A(t− r), where A ̸= 0. Clearly, if A > 0, then we have P1(0) < 0; if A < 0,
then we have P1(1) < 0. Thus, for any polynomial of degree 1 with the root as r,
it cannot map the unit interval [0, 1] into unit interval [0, 1] and hence, cannot be
implemented by a circuit. Thus, we prove the above claim and hence, the “only
if” part of Theorem 3.

5.2 Proof of the “only if” Part of Theorem 4

To prove the “only if” part of Theorem 4, we first give the following lemma.

Lemma 1 Given a circuit that implements a polynomial P2(t) with a pair of complex

conjugate roots r1,2 = a± bi with b > 0, then a circuit branch must exist in the form:

NOT
(
AND

(
P ′
1(t), P

′′
1 (t)

))
= 1− P ′

1(t) · P ′′
1 (t),

where P ′
1(t) and P ′′

1 (t) are two degree-1 polynomials that can be implemented by a

circuit.

Proof: First, the formation of a 2nd-degree polynomial may only be achieved
through the usage of the gate operation AND(P ′

1(t), P
′′
1 (t)) since the NOT gate op-

eration NOT(Pn(t)) does not modify the degree of the polynomial, and AND(P ′
2(t), P

′′
0 (t))

requires a pre-formed 2nd degree polynomial P ′
2(t).

Additionally, since AND(P ′
1(t), P

′′
1 (t)) will retain the roots of both P ′

1(t) and
P ′′
1 (t), therefore, both roots of the polynomial AND(P ′

1(t), P
′′
1 (t)) are real. Subse-

quent AND gate operations will raise the degree of the polynomial. As a result,
a NOT gate operation must be used to move the roots of AND(P ′

1(t), P
′′
1 (t)) into

the complex plane. Therefore, a circuit branch of P2(t) must appear as described.
□



Given Lemma 1, if we want to realize a 2nd degree polynomial with complex
roots, we are limited to the following form:

P2(t) = 1− P ′
1(t) · P ′′

1 (t), (20)

where P ′
1(t) and P ′′

1 (t) represent two degree-1 polynomials that can be implemented
by a circuit.

To prove the “only if” part of Theorem 4, we only need to prove the following
claim: a polynomial P2(t) of the form shown in Eq. (20) cannot have a pair of
complex conjugate roots r1,2 = a± bi such that (a, b) ∈ S.

We prove the above claim by contraposition. Suppose that a polynomial P2(t)
of the form shown in Eq. (20) has a pair of complex conjugate roots a ± bi such
that (a, b) ∈ S. Then, we further have the real component a ∈ (0, 1). Suppose the
polynomial is

P2(t) = c2t
2 + c1t+ c0.

The ratio c1/c2 must be equal to −2a (by completion of squares). Therefore, we
have −2 < c1/c2 < 0. Since a degree-1 polynomial that can be implemented by
a circuit is either the output polynomial of Case 1 multiplying a coefficient or
the output polynomial of Case 2 multiplying a coefficient, we are limited to three
cases for P ′

1(t) and P ′′
1 (t): (A) both in a form as the output polynomial of Case 1

multiplying a coefficient, (B) both in a form as the output polynomial of Case 2
multiplying a coefficient, or (C) one in a form as the output polynomial of Case 1
multiplying a coefficient and the other in a form as the output polynomial of Case
2 multiplying a coefficient. Next, we discuss these cases in turn.

A) The general equation for this case can be described as:

P2(t) = 1− (A1 (1− z1t)) (A2 (1− z2t))

= 1−A (1− z1t) (1− z2t)

= −Az1z2

(
t2 −

(
z1 + z2
z1z2

)
t+

1

z1z2
− 1

Az1z2

)
.

In this case, c1/c2 ≤ −2 for any z1, z2 ∈ [0, 1], which fails the requirement on
c1/c2. Thus, for Case (A), we cannot find a polynomial P2(t) with a pair of
complex conjugate roots a± bi such that (a, b) ∈ S.

B) The general equation for this case can be described as:

P2(t) = 1− (A1 (1− z1 (1− t))) (A2 (1− z2 (1− t)))

= 1−A (1− z1 (1− t)) (1− z2 (1− t))

= −Az1z2

(
t2 +

(
1− z1
z1

+
1− z2
z2

)
t+

1− z1
z1

1− z2
z2

− 1

Az1z2

)
.

In this case, c1/c2 ≥ 0 for any z1, z2 ∈ [0, 1], which fails the requirement on
c1/c2. Thus, for Case (B), we cannot find a polynomial P2(t) with a pair of
complex conjugate roots a± bi such that (a, b) ∈ S.

C) The general equation for this case can be described as:

P2(t) = 1− (A1 (1− z1t)) (A2 (1− z2(1− t)))

= 1−A (1− z1t) (1− z2(1− t))

= Az1z2

(
t2 +

(
z1 − z2
z1z2

− 1

)
t+

1

Az1z2
− 1− z2

z1z2

)
.

(21)



In this case, c1/c2 ∈ (−∞,∞) for z1, z2 ∈ [0, 1], providing an opportunity to
reach roots with real components a ∈ (0, 1).

Now that we have isolated Case (C) as a candidate for P2(t) polynomials, we
further analyze the implications for the complex plane coverage. First, completion
of squares will translate (21) to:

= Az1z2

((
t+

(
z1 − z2
2z1z2

− 1

2

))2

+
1

Az1z2
− 1− z2

z1z2
−
(
z1 − z2
2z1z2

− 1

2

)2
)

.

Recall the definition of the constants z1 and z2 by Case 1 and Case 2. These can
be expressed as their respective real roots r1 = 1

z1
and r2 = z2−1

z2
. The existing

polynomial can be expressed through these relations as:

=
A

r1 (1− r2)

((
t− 1

2
(r1 + r2)

)2

+
r1 (1− r2)

A
+ r1r2 −

(
1

2
(r1 + r2)

)2
)

.

In this form, the pair of complex conjugate roots we are aiming to represent, a±bi,
should satisfy that:

a =
1

2
(r1 + r2) and b2 =

r1 (1− r2)

A
+ r1r2 −

(
1

2
(r1 + r2)

)2

.

Since A ∈ (0, 1] and r1 (1− r2) =
1
z1

· 1
z2

> 0, we can always select a smaller value

of A that increases the value of b2. Therefore, we are interested in finding the lower
limit of b2, and can therefore set A to its maximum value of 1.
Given that a = 1

2 (r1 + r2) and A = 1, we have

b2 = r1 (1− r2) + r1r2 − a2 = r1 − a2.

Therefore, we have

a2 + b2 = r1.

The lower limit of the complex plane coverage will occur when r1 achieves its
minimal value. Given that z1, z2 ∈ [0, 1], we require r1 = 1

z1
≥ 1 and r2 = z2−1

z2
≤ 0.

Furthermore, as a ∈ (0, 1), we require that 0 < r1 + r2 = 2a < 2. To derive the
minimal value for r1, we consider the two symmetric sides of region S:

Left side: For a root r = a± bi in the region with 0 < a ≤ 1
2 .

In this case, the minimal achievable value of r1 is 1. When r1 = 1, r2 = 2a− r1 =
2a − 1 = 0, which satisfies the requirement on r2. This arc on the complex plane
is described by:

a2 + b2 = 1.

The region below the lower bound described here can be defined as:

S1 =

{
(x, y)

∣∣∣∣ 0 < x <
1

2
, x2 + y2 < 1

}
.



Right side: For a root r = a± bi in the region with 1
2 < a < 1.

In this case, r2 = 0 will produce the minimum values for r1. Under this condi-
tion, the minimal achievable value of r1 = 2a − r2 = 2a > 1, which satisfies the
requirement on r1. This arc on the complex plane is described by:

a2 + b2 = 2a,

or

(a− 1)2 + b2 = 1.

The region below the lower bound described here can be defined as:

S2 =

{
(x, y)

∣∣∣∣ 12 < x < 1, (x− 1)2 + y2 < 1

}
.

Combining these two cases, we arrive at the region of inaccessibility, S3, in the
complex plane:

S3 = S1 ∪ S2

=
{
(x, y)

∣∣∣ x > 0, x2 + y2 < 1
}

∪
{
(x, y)

∣∣∣ x < 1, (x− 1)2 + y2 < 1
}
.

Clearly, S3 equals S shown in Eq. (13), which indicates S is also a region of
inaccessibility. Thus, for Case (C), we cannot find a polynomial P2(t) with a pair
of complex conjugate roots a± bi such that (a, b) ∈ S.

6 Synthesis Procedure

In this section, we will demonstrate an algorithm to synthesize a circuit that
realizes any polynomial with a known factorization and without roots inside the
inaccessible region of the complex plane, S. We illustrate our method using the
following polynomial:

P5(t) =
1

3

(
1− t+ t2 − t3 + t4 − t5

)
,

which has the roots: ri = {1, 1
2 ± i

√
3

2 ,−1
2 ± i

√
3

2 }.

Step 1: Classify cases and constants. For each real root or pair of complex
conjugate roots, identify the case that matches its location on the complex plane,
and find corresponding constants. For roots where multiple cases match the same
root location (overlap between Case 3 & 5 and Case 4 & 6), choose the lower
method number, as the circuit delay is lowered by two logic gates per root pair in
these cases:

r1 = 1 : Case 1 → z = 1;

r2,3 =
1

2
± i

√
3

2
: Case 3 → z1 = 1, z2 = 1;

r4,5 = −1

2
± i

√
3

2
: Case 4 → z1 = 1, z2 =

1

3
.



Step 2: Implement circuit. Take each circuit branch found in the previous step
and connect them using successive AND gates. For this polynomial, we obtain the
circuit shown in Fig. 10.

Step 3: Remove redundancies and add coefficient. For any constants zi = 1, remove
the connected AND gate. As discussed earlier, the resulting polynomial P ∗(t) will
contain all the roots of the target polynomial P (t), but the target polynomial P (t)
may be a scaled version of P ∗(t). Suppose that

P (t) = A · P ∗(t).

If A = 1, we simply return the circuit for P ∗(t). If A < 1, the final circuit can
be constructed by adding an additional AND gate to the output of the circuit for
P ∗(t). The other input of the AND is set as the constant A. If A > 1, the original
polynomial cannot be realized by our method. We will also return the circuit for
P ∗(t), which calculates a scaled version of the desired polynomial. The final form
of our circuit is shown in Fig. 11.

7 Conclusions

This paper has characterized a subset of polynomials that stochastic circuits can
compute. The proofs are constructive, in the sense that they directly provide a
method to synthesize circuits that compute polynomials. We note that polynomials
are particularly useful functions in practice, arising in computer systems perform-
ing signal, image, and video processing. In prior work, we proposed a method for
synthesizing stochastic circuits that compute general polynomials by decomposing
them into Bernstein polynomials [6].2 The method that we propose here is gen-
erally superior, in the sense that it produces circuits with fewer gates and with
shorter delay.

To demonstrate this, we have computed logic gate costs and circuit delays for a
set of basic functions. We compare the results of the methods in this paper, which
we will call the root method, to previously published results, which used what we
will call the Bernstein method [4], in Table 5. Circuits generated for each function
using the root method are included in the Supplementary Information. Cases in
which the Bernstein method outperforms the root method we have discussed are
nearly nonexistent, yet there are several caveats:

– Firstly, the root method produces a scaled version of the desired polynomial,
with a leading coefficient, A. If A > 1, it can be scaled down via an AND gate
with the constant, 1/A, to achieve an identical match for the function. If A < 1
however, there is no direct method to scale a function up in the same manner.
Empirically defining a filter to identify these cases would circumvent the need
for polynomial deconstruction once implemented. Notwithstanding, generating
stochastic circuits with the root method is always preferable when A ≥ 1.

– Secondly, there are certain functions which cannot be represented by the root
method due to a root landing in the exclusion region, S. In such a case, the

2 We acknowledge here that Ivo Rosenberg was a co-author on this prior work. His mathe-
matical insights were indispensable in that work as well.



polynomial would have to be approximated to a new form which moves the
root to an accessible region.

We note that the root method uses exclusively AND and NOT gates and produces
circuits with no reconvergence. In some cases, this may reduce the flexibility com-
pared to the Bernstein method, which uses a “scaled addition” operator [4] which
involves reconvergent paths. For instance, different functions can be implemented
with the Bernstein method simply by supplying different inputs to the scaled ad-
dition operator. So the same circuit can be reprogrammed after being built [3,
4].

The coefficients of the polynomials produced using the root method present
a number of mathematical challenges that are unaddressed here. Although it is
relatively straightforward to construct a stochastic circuit representing a polyno-
mial and assess its leading coefficient on a case-by-case basis, it is nontrivial to
generate a closed-form expression to calculate this value without implementing
the full algorithm. This problem could be resolved through an empirical definition
over which polynomials can be constructed with this method, without need for an
operation to scale the leading coefficient up. Certain cases are relatively simple
to identify, such as when all roots of a polynomials reside exclusively in regions
corresponding to Cases 1 & 3, or exclusively in regions corresponding to Cases 2 &
4. Since each circuit branch produces a polynomial that has a maximum P (t) = 1
at either t = 0 or t = 1, products of these roots will continue to have the same
maximum at the same value of t. If the polynomial produced has a leading coef-
ficient less than one, that would indicate the target polynomial has a maximum
P (t) > 1 and therefore would break the definition of a probabilistic function, that
is, one that maps the unit interval to the unit interval. Therefore, these two cases
demonstrate systems where we are guaranteed to be able to compute polynomials
exactly matching the desired function. It is unknown for which other root com-
binations these stochastic circuits indeed exist. Nevertheless, continuing existing
development of these methods may lead to the conditions required to compute
unscaled polynomials.



Figures and Tables with Captions

AND OR XOR NOT

Fig. 1: Symbols for different types of gates.

x

y

z

Fig. 2: Bubbles on the inputs or the output of a gate indicate negation. Here
z = NOT(OR(NOT(x), y)).

x

y

x

y

AND

OR

AND

f

z
1

z
2

primary inputs: x, y
internal values: z1, z2
primary output: f

Fig. 3: An example of a digital circuit, consisting of gates and wires.



(a) (b)

x = 3/8

x = 3/8

0, 1, 0, 1, 0, 0, 1, 0

0

1
0
1
0
0
1
0

Fig. 4: Stochastic representation: (a) A random bit stream; (b) A bundle of wires
with random values. A value x in [0, 1] is represented as either a bit stream or
a bundle. The probability that each bit in the stream or bundle is one is x; the
probability that it is zero is 1− x.

AND

A

B

1,1,0,1,0,1,1,1

1,1,0,0,1,0,1,0

1,1,0,0,0,0,1,0

b: 4/8

C

a: 6/8
c: 3/8

Fig. 5: Multiplication with a stochastic representation: an AND gate. The inputs
are stochastic bit streams A and B and the output is a stochastic bit stream C.
Here, the probability of seeing a 1 on A is 6/8 and that of seeing a 1 on B is 4/8.
Accordingly, the probability of seeing a 1 on C is 6/8×4/8 = 3/8. This is illustrated
with bit streams of length 8 here. In general, the computation is probabilistic; it
only holds on average over a relatively long bit stream.



W
]

W
]

<hI�Â

<hI�Ã

�

�

3�W�� �����]W

3�W�� �����]�����W�

.]]j�]pIg<OI

.]]j�]pIg<OI

Fig. 6: Circuit branch for cases 1 & 2. (A) Circuit module for a polynomial rep-
resenting a root r = a ± 0i where a ≥ 1. (B) Circuit module for a polynomial
representing a root r = a ± 0i where a ≤ 0. Right of each circuit shows the roots
covered by the given module, represented on complex plane in black.

<hI�Ä

<hI�Å

�

�

W
]�
W
]�

W
]�
W
]�

3�W�� �����]�W������]��W�

3�W�� �����]������W�������]�������W��

.]]j�]pIg<OI

.]]j�]pIg<OI

Fig. 7: Circuit branch for cases 3 & 4. (A) Circuit module for a polynomial repre-
senting a root r = a ± bi where a ≥ 1

2 , (a − 1)2 + b2 ≥ 1. (B) Circuit module for
a polynomial representing a root r = a ± bi where a ≤ 1

2 , a
2 + b2 ≥ 1. Right of

each circuit shows the roots covered by the given module, represented on complex
plane in black.



<hI�Æ

<hI�Ç

�

�

W
]�

W
]�

W
]�

W
]�

3�W�� �����]�����������W������]�W��

3�W�� �����]������W������]�������W���

.]]j�]pIg<OI

.]]j�]pIg<OI

Fig. 8: Circuit branch for cases 5 & 6. (A) Circuit module for a polynomial rep-
resenting a root r = a ± bi where a ≥ 1. (B) Circuit module for a polynomial
representing a root r = a ± bi where a ≤ 0. Right of each circuit shows the roots
covered by the given module, represented on complex plane in black.

.IOQ][�]N�.]]j��[<EEIhhQDQYQjs

Fig. 9: Inaccessible polynomial roots. Region of complex plane that contains roots
inaccessible to nonconvergent, stochastic circuits.



W
�

W
�

W
�

W
�

W
ѿ�

&
DV
H�
�

&
DV
H�
�

&
DV
H�
�

3�W�� �ѿ�����W���W����W����W����W��

Fig. 10: Polynomial implementation, before reduction. Circuit implemented for poly-
nomial 1

3 (1− t+ t2 − t3 + t4 − t5) before redundancy removal.

W

W

W

W

W
ѿ�

&
DV
H�
�

&
DV
H�
�

&
DV
H�
�

3�W�� �ѿ�����W���W����W����W����W��

Fig. 11: Final polynomial implementation. Final circuit implemented for polynomial
1
3 (1− t+ t2 − t3 + t4 − t5).



Table 5: Comparison of Bernstein method and root method for constructing
MacLaurin polynomials for basic trigonometric and algebraic functions.

Bernstein Method Root Method Relative Change

f(x) Gate Cost Delay Gate Cost Delay Gate Cost Delay

sin(x) 49 20 14 6 -71% -70%
cos(x) 58 20 20 6 -66% -70%
tan(x) 49 20 14 6 -71% -70%

arcsin(x) 49 20 14 6 -71% -70%
arctan(x) 49 20 16 7 -67% -65%

sinh(x) 49 20 14 6 -71% -70%
tanh(x) 49 20 16 7 -67% -65%
cosh(x) 58 20 21 7 -64% -65%

arcsinh(x) 49 20 14 6 -71% -70%
exp(x) 58 20 21 7 -64% -65%

ln(x+ 1) 58 20 20 6 -66% -70%

Average 52.3 20.0 16.7 6.4 -68% -68%



Acknowledgements

We would like to thank Hidenori Shinohara for early assistance in developing the
preliminary concepts backing the major theorems in this paper. Additionally, we
would like to thank the anonymous reviewers for their insightful comments during
the revision process.

References

1. Alaghi, A., Hayes, J.P.: Survey of stochastic computing. ACM Transactions on Embedded
computing systems (TECS) 12(2s), 92 (2013)

2. Gaines, B.R.: Stochastic computing systems. In: Advances in information systems science,
pp. 37–172. Springer (1969)

3. Qian, W., Li, X., Riedel, M.D., Bazargan, K., Lilja, D.J.: An architecture for fault-tolerant
computation with stochastic logic. IEEE Transactions on Computers 60(1), 93–105 (2011)

4. Qian, W., Riedel, M.D.: The synthesis of robust polynomial arithmetic with stochastic
logic. In: Proceedings of the 45th annual Design Automation Conference, pp. 648–653.
ACM (2008)

5. Qian, W., Riedel, M.D.: The synthesis of stochastic logic to perform multivariate polynomial
arithmetic. In: Proceedings of the International Workshop on Logic and Synthesis, pp. 79–
86. IEEE (2008)

6. Qian, W., Riedel, M.D., Rosenberg, I.: Uniform approximation and bernstein polynomials
with coefficients in the unit interval. European Journal of Combinatorics 32(3), 448–463
(2011)

7. Qian, W., Riedel, M.D., Zhou, H., Bruck, J.: Transforming probabilities with combinational
logic. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
30(9), 1279–1292 (2011)

8. Riedel, M.D.: Cyclic combinational circuits. Ph.D. thesis, Caltech (2004)


	Introduction
	Basic Concepts and Facts
	Problems and Main Results
	Constructive Proofs of the ``if'' Parts of Theorems 3 and 4
	Proofs of the ``only if'' Parts of Theorems 3 and 4
	Synthesis Procedure
	Conclusions

