
1

SHF: Small: Advanced Digital Signal Processing with DNA

1. Introduction

It is cliché to begin a CISE proposal with a statement of
Moore’s Law. And yet, the remarkable and sustained
exponential pace of progress in computer performance spurs
all research in the field: our mandate is to produce novel
ideas to improve the technology, not in its present form, but
in the form where it will be in 2, 5 or 10 years, as the
exponential pace of progress continues.

Due to its digital nature, DNA-based computing is following a
trajectory similar to silicon-based computing. Indeed, it is
following a curve called the “Carlson Curve” [1], a
biotechnological equivalent of Moore’s Law named after Rob
Carlson. The Carlson Curve predicts exponential (even
hyper-exponential) decreases in cost and increases in
performance of DNA-based technologies, such as
sequencing, synthesis, and computation [2].

In a sense, the goals of this proposal are far ahead of the
curve. This project will pursue the design of advanced and
complex computation with DNA that is beyond the state-of-
the-art and indeed beyond what current applications call for. Existing applications of molecular computing
typically call for very simple computation, such as “if condition is true, then activate pathway A; else
activate pathway B.” Existing technology allows for simple circuits that implement such Boolean logic,
consisting of a dozen or so biological components [3]-[13]. However, given the trajectory of the field, the
technology will allow for much more complicated circuits soon. Applications, some of which we can guess,
others that will emerge unexpectedly, will follow. It is both timely and opportune to consider how to design
complex circuits with the new technology at the present time.

This proposal discusses techniques for implementing computation in general, and advanced digital signal
processing operations in particular, using molecular reactions in general, and DNA-based reactions in
particular. We consider synthesis of molecular reactions to implement signal processing functions such as
finite-impulse response (FIR) and infinite impulse response (IIR) digital filters, fast Fourier transforms
(FFT), and power spectral density (PSD) computations.

Whereas electronic systems perform computation in terms of voltage, i.e., energy per unit charge,
molecular systems perform computation in terms of molecular concentrations, i.e., molecules per unit
volume [14]-[23]. A particularly promising strategy for such computation is based on the mechanism of
DNA strand displacement [24],[25].

The goal is no computation per se; molecular systems are inherently slow and inaccurate compared to
electronic systems. Rather, the goal is construct the biological equivalent of embedded controllers:
molecular systems engineered to perform useful computation in situ, where it is needed, for instance for
drug delivery and for monitoring the effectiveness of drug therapy. Consider some potential application
scenarios. Figure 1 illustrates the filtering of a time-varying concentration of a protein through two
different frequency bands. The result is either to activate or to inhibit different pathways. The protein may
be a biomarker for cancer. The result may be the activation of a pathway to produce a chemo drug. In a
more complicated scenario, a band-pass filtered signal may activate or inhibit a pathway. In a still more
complex scenario, the ratio of spectral power in two different bands might be the requisite trigger.

Such scenarios, although hypothetical, are motivated by exciting recent research [26], [27]. In our own
recent work [28]-[30], we showed that a ratio of spectral power computed from an electroencephalogram
(EEG) electrode can predict seizures up to an hour before it happens. We have also identified ratios of

Protein
PSD

Figure 2. Protein monitoring for drug delivery.

Protein

Figure 1. Activation of two pathways by two
band-pass filters.

2

spectral power from magneto-encephalograms (MEGs) that can be used as biomarkers for schizophrenia
[31],[32]. These ratios could be computed using a ratio of the two filtered outputs shown in Figure 1;
however, computing such a ratio using power spectral density as shown in Figure 2 reduces the
computation complexity significantly. We recently proposed a low-power architecture for computing the
power spectral density (PSD) in electronic systems [33]. The Fast Fourier Transform (FFT) is the basic
building block in the PSD architecture. One of the goals of this project is to demonstrate how to compute
a power spectral density and a spectral ratio using molecular reactions.

We distinguish between discrete-time signal processing and digital signal processing. While signals are
sampled periodically in both systems, the signal is represented as an analog value in the former while the
signal is quantized to a digital value in the latter. Each has its advantages. Discrete-time signal
processing systems are similar to sampled data systems and require lower molecular concentrations;
however, the resolution cannot be precisely controlled. Digital systems are more precise, but require
higher molecular concentrations, just as digital numbers in electronic systems require multiple bits. A
major component of this project is to study how to implement analog-to-digital (A/D) and digital-to-analog
(D/A) conversion with molecular reactions. Such A/D and D/A conversion have not been explored before
by the molecular computing community. We propose to investigate and implement both discrete-time and
digital signal processing systems using DNA strand displacement as the target experimental chassis [24],
[25].

As principal investigators (Parhi and Riedel), we began working on digital signal processing using
molecular reactions five years ago. Our efforts have been funded by two NSF grants: an EAGER grant
(CCF 0946601) during 2009-2011 and another regular grant CCF-1117168 that started in 2011. These
two grants have allowed us to prove, for the first time, that digital signal processing and sequential
computations can be implemented using molecular reactions [34]-[38]. These results are significant
because, unlike electronic systems, molecular computing is inherently asynchronous and parallel: when
reactants are present, reactions fire at variable rates. Our work demonstrated that, through molecular
transfer reactions, delay elements can be implemented in a robust manner independent of the number of
delay elements. We were the first to present synchronized sequential computation with delay elements.
Our work also demonstrated that, using new bistable molecular reactions based on approaches similar to
dual-rail logic in electronic circuits, we can implement robust logic gates such as NAND and NOR [29].
We also demonstrated the implementation of D flip-flops, and computations such as binary addition,
linear feedback shift registers and square-root using molecular reactions [39]. This proposal will build on
the success of our prior and current work and will explore implementation of complex signal processing
functions for both discrete-time and digital signal processing applications.

The proposed effort will extend our prior work in two innovative and new directions. First, a complete
digital signal processing systems implementation will be demonstrated. Such a system will contain A/D
and D/A converters. Detailed studies of the properties of such systems will be performed, e.g., how the
resolution correlates with changing molecular concentrations and how robust the designs are to
parametric variations. These tradeoffs have not been explored before. Second, the project will develop
faster implementations of discrete-time as well as digital signal processing systems. The main bottleneck
in prior discrete-time signal processing implementations has been speed. Unlike in electronic systems,
where the speed is limited by changes in electric charge, the speed in molecular systems is limited by
changes in molecular concentrations, which are inherently slow. We propose new scheduling approaches
where multiple computations are mapped into different phases of transfer. This is based on generalization
of our prior schemes such as the Red-Green-Blue (RGB) scheme and our synchronous scheme, based
on sustained chemical oscillations. The proposed new scheduling approaches allow computation of
parallel outputs without increasing the number of delay transfer reactions. We expect to demonstrate that
this approach can increase the overall sample speed compared to our current and prior work. Reducing
currently achievable sample periods from 40-80 hours to 4-8 hours will enable experimental
demonstration of some example signal processing functions using DNA. Furthermore, we will investigate
tradeoffs in discrete-time and digital implementations of signal processing functions with respect to speed,
accuracy, and robustness.

3

2. Prior work

In this section, we describe our prior work on digital logic implementations and discrete-time signal
processing using molecular reactions and simulation using DNA. In Section 2.1, we briefly describe our
novel bistable mechanism to implement digital logic gates. These reactions were used to implement other
complex functions such as D flip-flops, binary adders, square-root units and linear feedback shift
registers. The details of these implementations have been described in [39]. The main advantage of the
proposed reactions is robustness. In Section 2.2, we describe implementation of delay elements and
signal transfer through delay elements using the RGB scheme and the synchronous scheme.

2.1. Digital Logic using Molecular Reactions
The most straightforward interpretation of binary values in the context of molecular computation is to
assign a threshold to the concentration of a designated molecular type [40]. When the concentration
exceeds a threshold level, the bit is considered a logical 1; otherwise it is considered a logical 0. Although
such a representation is conceptually simple, it requires external mechanisms for comparing the
concentration of the designated molecular type with the threshold. Furthermore, it suffers from signal
degradation over time: unwanted residue accumulates every time a signal value changes, unless there is
some mechanism to clear the signal. To mitigate these issues, we use a complementary representation
(reminiscent of a “dual-rail” encoding). For a single bit X, we use two molecular types, and . The
presence of indicates that X is set to 0; the presence of indicates that X is set to 1. Clearly, and

 should not be present at the same time or else the value of X would be ambiguous. We use following
set of reactions to ensure that this does not happen:

, , (1)

In Reactions (1), a molecule of combines with a molecule of to produce a molecule of . This
molecule of then combines with a molecule of or , depending on which it meets first. The choice is
competitive: both and are trying to increase their concentration via the intermediary type ;
whichever has a higher concentration wins. The concentration of the loser effectively drops to zero. So
this mechanism clears out the leakage of molecular types that would otherwise occur when bits are set.
We can map Reactions (1) to DNA strand displacements. This bistability forms the basis of our
representation of a bit. The rate kinetics of reactions (1) have been studied in our publication [39].

Given this robust representation of binary bits, we demonstrate how to implement logic gates with
molecular reactions. We only consider two-input gates; gates with more than two inputs can be easily
implemented by cascading two-input gates. Suppose the inputs of a gate are X and Y, and the output is
Z. These signals are represented by the concentrations of / , / , and / , respectively. Each one
of X, Y , and Z is regulated by its own version of the bit operation reactions:

, ,

, , (2)
, ,

For each of the four entries in the truth table for the gate, if the value of Z is 1, then molecules of , if
any, should be transferred to . Similarly, if the value of Z is 0, then molecules of , if any, should be
transferred to . Let us first consider an AND gate. By definition, either X = 0 or Y = 0 sets Z to 0, which
means that when either or is present, should be generated and should be cleared out. This is
implemented by the reactions

, (3)

Here, and transfer to but keep their own concentrations unchanged. Z is set to 0 if it has
not already been. Z should be set to 1 only when both X = 1 and Y = 1. This is implemented by the
reactions

 , , (4)

4

To simulate the AND gate, we map Reactions (2), (3) and (4) to DNA strand-displacement reactions
and generate their corresponding ODEs. The results are shown in Figure 3A.The idea can be used for
implementing OR, NOR, and XOR gates [39]. Reactions in (2) are required for all gates. The special
molecular reactions for implementing these gates are tabulated in Figure 4. Figure 3 B, C, and D,
respectively, show the simulation results for OR, NOR, and XOR gates. Any random combinational logic
can be implemented either by using these primitive gates or by direct synthesis.

2.2. Discrete-time Signal Processing
A DSP system is composed of two parts: computation
and memory. The computation part executes arithmetic
operations such as addition and multiplication, whereas
the memory part consists of delay elements that store
signals and transfer these signals to the output of the
delay element in subsequent cycles. Our prior work on
molecular DSP has demonstrated methods for
implementing DSP algorithms using synchronous and
RGB schemes [38]. In both schemes the computation
part is implemented by the same set of reactions. The
difference between these schemes lies in the
implementation of the delay elements and transfer
reactions.

One time execution of each computation of a signal processing algorithm is referred as an iteration or a
computation cycle. In prior work, we have developed an RGB scheme and a synchronous scheme. These
two schemes differ in how an iteration of computation is completed. In the RGB scheme, three types of
proteins (R, G, and B) are used. Their absence indicators r, g, and b are used to represent absence of a
certain protein. Transfer of R to G enabled by the absence indicator b (absence of B), transfer of G to B
enabled by absence indicator r, and transfer of B to R enabled by absence indicator g complete an
iteration of computation. In contrast, in a synchronous system, a two-phase clock is used to complete all
computations and transfer reactions associated with each iteration.

Figure 5. Block diagram for the moving average filter.

 Figure 3. DNA-level simulation results for the logic gates. Concentration values are normalized.

OR NOR XOR

Figure 4. Molecular reactions for OR, NOR, and XOR gates.

5

We have demonstrated implementation of discrete-time finite-impulse response (FIR), and infinite impulse
response (IIR) digital filters and fast Fourier transforms (FFTs) using RGB and synchronous schemes. We
have shown that synchronous schemes take longer time to complete an iteration but lead to better
accuracy while RGB schemes are faster but compute
outputs with less accurate results. Although details of all
prior implementations cannot be included here due to lack
of space, we illustrate both schemes using a simple
example: the moving-average filter. The block diagram for
the filter is shown in Figure 5. It produces an output value
that is sum of one-half the current input value and one-
half of the previous value. Given a time-varying input
signal, , the output signal, is a moving average, i.e., a
smoother version of the input signal.

2.2.1. Synchronous scheme
Similar to electronic systems, the synchronous scheme
has a two-phase clock. The clock signal synchronizes
transfers signals between computation and memory parts. Each delay element in this scheme consists of
two molecular types, and . The realization of the moving-average filter in the synchronous framework
is shown in Figure 6. We assume that a two-phase clock generates and consumes the molecular types R
and B in alternating fashion. In other words we color-code first and second phase of the clock as R(ed)
and B(lue). Figure 7 shows the concentrations of R and B as a function of time, for our proposed two-
phase clock. Details regarding how to generate an n-phase clock are given later in this section.

Set of molecular reactions for the synchronous implementation of the moving-average filter are given in
(5). In the presence of B, the input signal X is transferred to molecular types A and C; these are both
reduced to half and transferred to D′ and Y, respectively. In the presence of R, D′ is transferred to D.

Phase 1:

2 C (5)

 D + B

Phase 2:

For a general DSP system, in the first phase of
the clock, the computation results are stored in

 and in the second phase the concentration of
 transfers to . To validate our designs for the

moving-average filter, the chemical reactions
were mapped to DNA strand displacement
reactions, using the method in [25], and their
kinetic differential equations were simulated.

The simulation results for the moving-average filter are shown in Figure 8. The input is a time-varying
signal concentration X with both high-frequency and low-frequency components. The output is a time
varying signal concentration Y. Molecules of X are injected and molecules of Y are collected from the
system every 80 hours. The figure shows the theoretical output, i.e., an exact calculation of filtering, as
well as the simulated output. We see that our design performs very well, filtering out the high-frequency
component as expected. The simulated output concentration does not quite track the theoretical output
concentration. The explanation for this is that, due to the small overlap of the clock phases, the next
phase begins before the reactions in the current phase complete. To decrease the overlap between two
phases of the clock, we can add extra phases and choose two phases in a way to have a symmetric two-
phase clock. For example we can use a 6-phase design and choose phases 3 and 6 of a six-phase
oscillating pulse as clock signals. Although such an approach is likely to enhance output accuracy, the

Figure 6. The synchronous implementation for the
moving average filter.

Figure 7. Differential equation simulation of the chemical
kinetics of the 2-phase clock. In principle, the amplitude
and frequency of oscillations can be controlled.

6

sample period would be substantially increased as more transfer reactions need to be completed within
the iteration. In electronic circuits, a clock signal is generated by an oscillatory circuit that produces
periodic voltage pulses. For a molecular clock, we choose reactions that produce sustained oscillations in
terms of chemical concentrations. With such oscillations, a low concentration corresponds to a logical
value of zero; a high concentration corresponds to a logical value of ‘1’.

Techniques for generating chemical oscillations are well established in the literature. Classic examples
include the Lotka-Volterra, the “Brusselator”, and the Arsenite-Iodate-Chlorite systems [41], [42].
Unfortunately, none of these schemes are quite suitable for synchronous sequential computation: we
require that the clock signal be symmetrical, with abrupt transitions between the phases. Here, we
present a new design for an n-phase chemical oscillator (n ≥ 3). The clock phases are represented by
molecular types , , ..., . First consider the Reactions in (6) and (7).

 , , … , (6)

 , , … , (7)

In reactions (6), the molecular types , , ..., are generated slowly and constantly, from source types
, , ..., whose concentrations do not change with the reactions. Here, all reactions are expressly

designed to have two reactants; this permits us to map the reaction to DNA strand displacement reactions
effectively. In reactions (7), the types , , ..., quickly consume the types , , ..., , respectively.
Call , , ..., the phase signals and , , ..., the absence indicators. The latter are only present in
the absence of the former. The reactions

 , , … , (8)

transfer one phase signal to another, in the absence of the previous one. The essential aspect is that,
within the , , ..., sequence, the full quantity of the preceding type is transferred to the current type
before the transfer to the succeeding type begins. To achieve sustained oscillation, we introduce positive
feedback. This is provided by the reactions:

 , ,

 , ,

 , , (9)

Consider the first three reactions. Two molecules of combine with one molecule of to produce three
molecules of . The first step in this process is reversible: two molecules of can combine, but in the
absence of any molecules of , the combined form will dissociate back into . So, in the absence of ,
the quantity of will not change much. In the presence of , the sequence of reactions will proceed,

Figure 8. DNA-level simulation of the moving average filter implemented using synchronous scheme.

7

producing one molecule of for each molecule of that is consumed. Due to the first reaction, the
transfer will occur at a rate that is superlinear in the quantity of ; this speeds up the transfer and so
provides positive feedback. Suppose that the initial quantity of is set to some non-zero amount, and the
initial quantity of the other types is set to zero. We will get an oscillation among the quantities of , , ...,

. One requirement for a clock in synchronous computation is that different clock phases should not
overlap. In a two-phase clock for synchronous structures: concentrations of molecular types representing
clock phase “0” and clock phase “1” should not be present at the same time. To this end, we choose two
nonadjacent phases, and in a four-phase oscillator, as the clock phases. For a clearer illustration,
we use R(ed) to denote and B(lue) to denote .Our scheme for chemical oscillation works well.

2.2.2. RGB scheme
Unlike the synchronous scheme the RGB scheme does not require a global clock; rather it is “self-timed”
in the sense that a new phase of the computation begins when an external sink removes the entire
quantity of molecules Y, i.e., the previous output value, and supplies a new quantity of molecules X, i.e.,
the current input value.

The moving-average filter in this framework is shown in
Figure 9 and can be implemented by the reactions in Figure
10. The molecular types corresponding to signals are X, A,
C, R, G, B, and Y. To illustrate the design, we use colors to
categorize some of these types into three categories: Y and
R in red; G in green; and X and B in blue. The group of the
first three reactions shown in the S1 column of Figure 10
transfers the concentration of X to A and to C, a fanout
operation. The concentrations of A and C are both reduced
to half, scalar multiplication operations. The concentration
of A is transferred to the output Y, and the concentration of
C is transferred to R. The transfer to R is the first phase of
a delay operation. Once the signal has moved through the
delay operation, the concentration of B is transferred to the
output Y. Since this concentration is combined with the concentration of Y produced from A, this is an
addition operation. The final group of three reactions shown in the S1 column of Figure 10 implements the
delay operation. The concentration of R is transferred to G and then to B. Transfers between two color
categories are enabled by the absence of the third category: red goes to green in the absence of blue;

green goes to blue in the absence of red; and blue goes to red in the absence of green. The reactions are
enabled by molecular types r, g, and b that we call absence indicators. The absence indicators ensure
that the delay element takes a new value only when it has finished processing the previous value.

Figure 9. The moving average filter
implemented in RGB scheme.

Figure 10. Set of molecular reactions for the RGB implementation of the moving average filter.

8

Table 1. Comparison for moving average, biquad, and RFFT in

synchronous and RGB schemes.

system scheme no. of
reactants

no. of
reactions

Sample
period
(hrs)

% error
(

moving
average

Sync. 22 29 80 4.21
RGB 16 24 20 5.67

biquad Sync. 37 44 80 8.63
RGB 32 46 50 12.79

RFFT Sync. 119 202 900 7.8
RGB 213 225 425 22

The simulation result for the RGB
implementation of moving average filter is
shown in Figure 11. Like the synchronous
scheme the input signal contains both high
frequency and low frequency components.
Molecules X are injected into the system
and molecules Y are collected from the
system every 20 hours. We see that our
design performs well, attenuating the high-
frequency component. The simulated
output concentration does not quite track
the theoretical output concentration; it is
higher than it should be for high input
concentrations. The explanation for this is
that, for high input concentrations, the
reactions fire quickly, so the computational
cycle completes early. Before the next cycle
begins, some “leakage” of the output
concentration occurs.
2.2.3. More Complex Applications
Based on the previous frameworks we investigated the biomolecular implementation of two more complex
applications: biquad filter and fast Fourier transform (FFT). Due to lack of space in the proposal the
details of these implementations are not included. The details of these reactions have been presented in
[34] and [38]. The biquad filter is an infinite-impulse response filter and contains feedback. The FFT
computes the Fourier-domain representation of a time-domain signal. Although the computations are
feed-forward, this requires molecular implementation of switches or multiplexors.

Table 1 compares the simulation results of the three operations,namely, the moving-average filter, the
biquad filter, and the real FFT (RFFT)
transform, in both the synchronous and RGB
frameworks. The real FFT computes the FFT
of a real signal. The error in this table is
computed as the difference between the
output value obtained by simulation, , and
the theoretical output, . Table 1 shows that
the synchronous scheme has lower error. On
the other hand, it is slower than the RGB
scheme. Although the in-vitro simulation
results using DNA strands validate the
functionality of the methods, it is essential to
improve their speed and robustness.
Proposed efforts to overcome these barriers
are described in next section.

3. Proposed work

Prior work in our group has provided a framework for synthesizing DSP operations with molecular
reactions. The proposed project will build upon our prior work and will explore novel methodologies to
improve robustness, accuracy and speed of the molecular DSP systems. First, digital implementations of
signal processing functions are proposed. These systems require A/D and D/A conversions. Molecular
implementations of these systems have never been attempted before. Second, new scheduling
approaches are presented to reduce the sample period in discrete-time signal processing systems.

Figure 11. DNA-level simulation of the moving average filter
implemented in RGB scheme.

9

DACADC

output

Digital Logic
Circuit

input

Figure 12. Proposed digital Framework for
biomolecular discrete-time signal processing.

+

+

x

x

i2

i1

i0

output
4

2

Figure 13 . Proposed DAC circuit.

+
+

+

-
+

DAC

R2R1R0
En

1 0 0
SR

R

input

dac

in

Figure 14 . Proposed ADC circuit.

3.1. Fully-Digital Signal Processing
Designing a robust DSP system with biomolecular
reactions is very challenging. For the discrete-time
systems described in previous sections, the speed and
output error vary depending on the input and
intermediate signal values. This is because the reaction
rates are proportional to the concentration of the
participating molecular types. To improve robustness, we
propose to develop a framework to implement DSP
operations in a fully-digital manner. Figure 12 illustrates the general structure of our design. Proposed
objectives include: design and implementation of robust and fast arithmetic operations in this framework,
analog to digital converter (ADC), and digital to analog converter (DAC). Based on our preliminary work,
we present a proof of concept for molecular implementation of these building blocks. It may be noted that
the molecular reactions are implemented using a clock generated using a synchronous scheme.

3.1.1. DAC and ADC

Digital to Analog converter (DAC). Figure 13 illustrates
the proposed DAC circuit for a 3-bit data. The required
arithmetic operations (addition and multiplication) for this
circuit are well defined in prior work [24]. The conversion
must be fired to completion when the clock is nonzero.
The output value is collected when the clock is zero.
Reactions in (10) represent an abstract implementation
of DAC.

 , , (10)

Analog to digital converter (ADC). For the molecular ADC we apply the idea of successive-
approximation-register (SAR) [43] used in electronic ADCs and adapt it in a way that can be efficiently
implemented by molecular reactions. Compared to other ADCs, SAR has some advantages for electronic
as well as molecular implementations. First, this approach does not require a counter. Second, the time to
convert an analog value to digital is independent of the signal value. Figure 14 shows the proposed ADC
in detail. In this figure SR is a shift register with the initial value of “100”. R is a register initialized by “000”.
The DAC inputs are connected to the bit-wise addition of SR and R. During the first clock pulse the output
of the DAC, or the inverting input of the
comparator, is 4. Thus, the sample of a
discrete-time input signal is compared with
4 and if it is greater than 4, the
comparator’s output is set to ‘1’. In this
case the nonzero value of (bit 2 of
register SR) is copied to (bit 2 of
register R) and sets its value to ‘1’.
Otherwise, if the DAC output is less than 4,

 remains ‘0’. Transfer of to is
implemented by the following chemical
reaction:

 (11)

In reaction (11), corresponds to an
enable signal. At the next clock pulse the
content of the SR changes to “010”. Then
the DAC input is “010” or “110” depending on whether is ‘0’ or ‘1’, respectively. Therefore, the analog
input signal is compared to 2 or 6 depending on the value. If the value of input signal is greater than ‘1’

 is copied to . Otherwise remains ‘0’. Finally, in the same manner, the value of is determined
during the third clock pulse. Therefore, the 3-bit digital equivalent for the current sample of the discrete

10

D
in

+

D

+
out

xa xb xc

Figure 15. A 3-tap FIR filter.

x

+ +
y

+

2-8 2-6 2-4 2-1

- - -

Figure 16. CSD Implementation of

.

time input is available as “ ”. Note that for each new input sample, R must be reset at the beginning
of the conversion.

Each element in the ADC circuit will be implemented by molecular reactions targeting the DNA-strand
displacement reactions. We will use a clock similar to the two-phase synchronous clock. Register, R, and
shift register, SR, can be implemented using D flip-flop. In prior work, we have demonstrated
implementation of D flip-flops by molecular reactions [39].

For the comparator, based on our prior work [44], we develop a construct that compares the quantities of
two input types and produces an output type if one is greater than the other. We now describe how this
can be achieved. First we sample the input signal, in, and the DAC output signal, dac, in Figure 14 using
the reactions in (12). The sampling reactions should be fast enough to complete by the current clock
phase.

 , (12)

Then we compare the samples and by consuming them via the following reaction:

. (13)

We assume that the reaction fires to completion. The result is that there are only molecules of left, or
only molecules of left, or no molecules of or left. Molecules of the type that originally had a
larger quantity will persist. If the quantities are equal, then both types are annihilated. In order to
determine which type is completely annihilated, we need to generate the absence indicators and ,
respectively, for samples and .

 , , (14)

Reaction (15) produces the molecule En if the sampled value from the input is greater than the sampled
value from the DAC’s output.

 (15)

Finally, for robustness and to enable start of the next comparison, we use the following reaction to
destroy in the case that the asserted condition is not true:

 , . (16)

For the central part of our structure, we use a very robust molecular implementation of logical circuits
based on the approach discussed in Section 2.1 for binary representation. One should note that the
proposed complementary bit representation can be easily applied to the ADC and DAC parts.

3.1.2. Digital Filter design. Constructs for ADC, digital logic,
and DAC will be used in combination with a synchronous
clock to demonstrate a digital filter implementation. A simple
3-tap FIR filter is shown Figure 15. The main components of
the digital filter are delay units, adders, and constant
coefficient multiplication. Here, delay elements are W-bit
registers where W is the number of bits, also referred to as
word-length. A W-bit register consists of W D flip-flops.
Therefore, delays and adders can be implemented based on constructs from our prior work.

Consider the number as the constant
coefficient in the FIR filter. Now the multiplication , where
is a variable data can be expressed as .
It is clear that constant multiplication can be carried out by
adding a number of partial product terms corresponding to the
nonzero bit positions in the constant multiplier. The number of
add operations required equals one less than the number of
nonzero bits in the constant coefficient. The constant coefficient
can be encoded such that it contains the fewest number of
nonzero bits. This can be accomplished using canonic signed digit (CSD). In CSD representation each bit

11

x
+

y
+

2-2

2-5 2-1

+

2-3

Figure 17. Improved circuit for implementation
of .

computation

2

1

4

3

Figure 18. 4-phase scheduling.

1 2 3 4

B R G

Figure 19. RGB and 4-phase timing.

is in the set {-1,0,1} instead of {0,1} for common 2’s
complement representation. In fact, the multiplication
for CSD multiplier is calculated by adding or subtracting
partial product terms. The properties of CSD
representation, an algorithm for computing the CSD
format of a number and how to convert a 2’s
complement representation to CSD are described in
[45]. As an example for the number 1.01110011 in 2’s
complement format, the CSD representation is

. (Here denotes the bit value of -1). In this
case the number of nonzero bits is reduced from 6 to 4.
The multiplication can be
computed as illustrated in Figure 16. We can apply the
Horner’s rule for precision improvement and tree-height
reduction technique for latency reduction [46]. The
improved CSD multiplier is shown in Figure 17. Molecular implementation for other types of multipliers
such as Baugh-Wooly [46] can be investigated.

While these filter optimizations are well known in electronic circuits, the impact of these tradeoffs in
molecular implementations has not been explored. Various optimization approaches will be implemented
in DNA and their tradeoffs with respect to speed and accuracy will be investigated.

Adaptive digital filters cannot be implemented using fixed coefficients. In these systems, the coefficients
are adapted. Thus, the multipliers need to be programmable. Various programmable multipliers such as
modified Booth recoded Wallace tree have been used in electronic implementations. We propose to
simulate these multipliers using molecular reactions for implementing an adaptive digital filter.

3.2. High-Speed Discrete-time Systems using DNA
The proposed work will investigate implementations of parallel signal processing systems using DNA to
increase achievable sample rates. We argue that computation of multiple outputs in parallel will reduce
the sample period since the number of delays does not change in these computations and the completion
time for the transfer reactions stays about the same. Since computations are fast, the effective sample
period can be reduced as the level of parallelism increases. This, however, increases the number of
reactions. The basic approach involves mapping computation of different outputs to various phases of the
computation cycle. Multiple outputs can be computed in parallel either using the RGB scheme or a
synchronous scheme. We illustrate computation of the parallel FIR filter using the RGB scheme. We also
propose a new 4-phase scheme to implement discrete-time signal processing systems. Then we describe
how parallel outputs can be computed using the proposed 4-phase scheme.

3.2.1. Fast DSP using a 4-Phase Scheme
We illustrate a new 4-phase clock-free scheme where we implement
delay elements using two molecular types. A synthesis approach for
mapping any DSP algorithm to molecular reactions in the 4-phase
scheme is described below:
1- Draw the data flow graph (DFG) according to the block diagram of
the DSP algorithm. Replace the input node by nodes and ,
output node by nodes and , and each delay element by a pair
of nodes and .
2- Assign phase 1 to the outgoing edges of the node , and the
outgoing edges of each node.
3- Assign phase 3 to the fan out edges of the nodes , and All
edges between and .
4- Consider additional nodes and . transfers to

 and transfers to at phases 2 and 4,
respectively.

12

D
X

+

D

+
Y

(a)

+ +

D1D’1 D2D’2X X’

Y Y’

(b)

x’

D1 D2 D’2D’1

y

y’

x
3 1 3

3

1

1

1

1

1

3

2

4

m2
m4

(c)

Figure 20. A three-tap FIR filter: (a) Block diagram,
(b) 4-phase scheme (c) Data flow graph and scheduling
based on the proposed method.

5- The molecular reactions for absence indicators, computations, and signal transfers are synthesized
according to the assigned scheduling phases.

It noticeable that in an asynchronous scheme, edges of
two consecutive phases cannot be directly connected
[37]. Here phases 2 and 4 are introduced to separate
phases 1 and 3. Figure 18 illustrates the a 4-phase
scheduling scheme. Signal transfers in each phase are
triggered by the absence indicators (dashed arrows) of
the previous phase. The concept for absence indicators
is described in [37]. The concentrations for and
are independent of the input signal value. Therefore,
they can be very small. This is key to faster phases 2
and 4. However, in the RGB scheme the complete
signal value transfers in each phase. Thus, none of the
phases can be shrunk. Figure 19 illustrates how a
computing iteration in the proposed 4-phase scheme
can be faster compared to the RGB scheme. We
illustrate the synthesis method for an FIR filter.
FIR filter. Figure 20(a) shows a three-tap FIR filter. For
simplicity, all tap coefficients are assumed to be 1. The
flow graph in Figure 20(b) illustrates the phase
assignments. Reactions in (17) provide absence
indicators for the flow graph. First reaction in (17)
slowly generates the absence indicators for each
phase. In the remaining reactions of (17), the source
molecules of signals are transferred in each phase
quickly, and the absence indicator of that phase is
consumed.

 Phase 2:

Phase 1: Phase 3:

 (17)

 Phase 4:

The reactions (18) provide the signal transfers associated with corresponding absence indicators. Signal
transfers of each phase are enabled by the absence indicator of the previous phase. Note that these are
all slow reactions.

Phase 1: Phase 2:

 Phase 3: (18)

Phase 4:

According to reactions (17) and (18), molecules of , , , and transfer in the first phase. After all
molecules of , , , and are transferred, phase 2 starts and is transferred to . In phase 3, ,

, and transfer, respectively, to , , and . Concentration of and are stored to be used
for the computation of the next output. Thus, each pair of and () function as a delay element.

13

Figure 23. Dividing a block of input signal into

overlapped segments.

D

+

D +

y(2n)
+

y(2n+1)

x(2n)

x(2n+1)

1 1D1 D’1 33

x0

3

1 1D1 D’1 333

x1

x’1

x’0 y0

y1 y’1

y’0

1

1

1

1

1

1

(a) (b)

Figure 21. 2-parallel flow graph of the 3-tap FIR filter.

R1 B1

x3

x2 y2

y3

x1

x0
y0

y1

G1

R2 B2G2

1

1

D1 D’1 33

x2

3

1

1

D2 D’2 333

x3

x’3

x’2 y2

y3 y’3

y’2
1 1

1

1

1 3

x0

3

1 33

x1

x’1

x’0 y0

y1 y’1

y’01
1

1 1

1

1

1

1

(a) (b)

Figure 22. 4-parallel flow graph for the 3-tap filter in: (a) RGB scheme, (b) 4-phase scheme.

3.2.2. High-Speed by Parallelism.
Using the circuit-level techniques [47], we can speed up the molecular reactions by parallel computing
either in the context of RGB scheme or the proposed 4-phase scheme or a synchronous scheme.

Figure 21(a) illustrates a 2-parallel version of the 3-tap filter in Figure 20(a). The scheduling to compute
two parallel outputs is shown in the Figure 21(b). Instead of one input sample, two input samples are
processed per each 4-phase cycle. The parallelization level can be increased arbitrarily. For example
Figure 22 illustrates a 4-parallel implementation of the 3-tap filter using RGB and 4-phase schemes. Both
of these schedules include two delay elements. The number of delay elements is same as the original
flow graph for the 3-tap filter. Here the overall computational rate increases by factor of 4, compared to
the original implementation. Unlike electronic circuits, parallelism in molecular systems doesn’t increase
the cost of implementations as reactants are available in abundance.

3.3. Power Spectral Density (PSD) Computation.

PSD represents the power of the input signal over a
range of frequencies. Molecular implementation of the
PSD has a potential role in many applications such as
protein monitoring, drug delivery, disease state
measurement, etc. The PSD of a signal is the Fourier
transform of the auto-correlation of the signal. There
exist different methods to compute or estimate the
PSD. Due to the availability of computationally-efficient
FFT algorithms, the periodogram approach is often
preferred to other approaches. The widely used
method to compute PSD is the Welch method [48]
which is a modified periodogram approach. FFT is the core part of the Welch method. In general, as

14

Figure 25. Bidirectional filter proposed in [33] for

the PSD computation.

Figure 24. Using two consecutive -point FFTs in
order to compute one N-point FFT.

illustrated in Figure 23 an overlap of 50% is used when dividing the input signal into multiple segments. In
[33], we propose an architecture that reduces the number of operations required to compute the PSD.
The proposed architecture requires a -point FFT instead of
an N-point FFT block, where N is the length of the window.

The main idea is to reuse the -point FFT from the previous
segment by moving the windowing operation into the
frequency domain. This is only practical when the window
functions are represented by raised cosine functions. The
window operation in time domain is converted to a
convolution operation in the frequency domain and is
implemented by a symmetric 3-tap or 5-tap FIR filter using 2
or 3 multipliers, respectively. The low-complexity of the
frequency-domain convolution with a short filter is the key to
reduction in complexity of the PSD computation. Figure 24
illlustrates this idea. For FFT blocks efficient architectures
for real-valued signal presented in [49] and [50] are used.

In the proposed approach, the even samples are computed
exactly, while the odd samples require a shift by a half-
sample delay. The method uses a bidirectional filter
approach to implement the half-sample delay filter. Figure
25 shows the structure of the bidirectional filter used in [33].

4. Schedule
This three year project will address molecular

implementation of digital and discrete-time systems. Year-1
will be demonstrate ADC and DAC implementations by
molecular implementations, and faster implementations by using the proposed 4-phase scheme. Year 2
will be devoted demonstration of fully-digital building blocks for functions such as multipliers, dividers,
digital filters, and FFTs using DNA; and parallel implementations using RGB and 4-Phase schemes. Year-
3 will be devoted to the demonstration of PSD using discrete-time and digital approaches.

5. Broader Impact of Proposed Research

If successful, the proposed research will transform molecular computing research for domains such
as drug monitoring and drug delivery. Currently, an ineffective and ad-hoc approach prevails, where only
very simple circuits implementing logical conditions such as “if-then-else” are considered. Our research
will open up the field by permitting robust computation of time-varying functions. The full expertise and
experience of the discipline of digital signal processing (DSP) will be brought to bear on important
problems. Instead of approaching drug therapy as an exercise in collecting data, computing offline (i.e.,
electronically or by consulting a human expert), and then delivering drugs, new systems of autonomous
molecular therapy will be engineered.
6. Minority Involvement Plan/Outreach/Education

The investigators will work with the University of Minnesota’s College of Science and Engineering
Diversity and Outreach program to involve underrepresented students in research. This program
manages the NSF-funded North Star STEM Alliance--Minnesota’s Louis Stokes Alliance for Minority
Participation (LSAMP). One of the core principles of the Diversity and Outreach program is that Mentoring
and introduction of research opportunities early in the undergraduate career is the best practice for
retention. Through participation in the North Star programs, the students will present their research to
North Star fellows to demonstrate their research. They can choose from a selection of outreach events
that are provided by the North Star program including a Kickoff Day at the beginning of each year and a
spring symposium in the spring semester to showcase research opportunities at the university. Each
student will participate in one of these events during their fellowship. The undergraduate students

15

attending these presentations are encouraged by North Star program to seek research positions in labs.
North Star also supplies funding for underrepresented students to attend conferences when mentored by
a graduate student to increase the exposure of the students to the research community beyond the
University’s laboratories. The PIs will engage a student from the North Star program.
6.1 K-12 outreach plan

The College of Science Engineering (CSE) offers a summer high school student outreach program,
“Exploring Careers in Engineering and Physical Science (ECEPS)”. This program offers students hands
on introduction to engineering, science and math opportunities on the University of Minnesota Twin Cities
campus by providing the students tours, along with short projects, in different labs around the campus.
This program is designed to appeal to and reach both girls and underrepresented minorities with an
interest in the STEM disciplines. In particular, two of the four possible one week sessions are devoted to
girls only. The PIs will participate in this program to increase the involvement of high school students in
the engineering program. This involvement will inspire high school students to be interested in science
and technology.
6.2 Integration of Research into Course Curriculum

The results of this research will eventually be integrated into two graduate courses: EE-5393
“Circuits, computation and Biology” and EE-5329 “VLSI Signal Processing” taught by the investigators at
the ECE department at the University of Minnesota. These classes typically involve course projects.
Portions of the research can be used as course projects in these classes.
7. Results of Prior NSF Support

Parhi: The PI has recently completed two NSF grants. Award CCF-0811456: Collaborative
Research: CPA-DA: Noise-Aware VLSI Signal Processing: A New Paradigm for Signal Processing
Integrated Circuit Design in Nanoscale Era, 9/1/2008-8/31/2011. The EAGER grant CCF-0946601:
EAGER: Synthesizing Signal Processing Functions with Biochemical Reactions (with M. Riedel) started
on 8/1/09 and ended on 7/31/2011. CCF-0811456 grant has enabled us to create a tool for estimation of
power consumption by estimating switching activity in arithmetic circuits to reduce power consumption in
frequency-selective FIR filters by correction circuitry, and to improve reliability of demodulation in
orthogonal frequency division multiplexing (OFDM) systems. The robust demodulation work enabled
removing sparse impulse noise without assuming a prior model of the probability density function (pdf) of
the impulse noise as assumed in prior models. These results have been published in [51]-[57]. The
EAGER grant on bimolecular signal processing allowed us to prove that signal processing can be
implemented using chemical and molecular reactions in general and DNA strands in particular. This was
the first attempt to prove that discrete-time signal processing systems can be implemented in DNA
strands. This work also led to new digital logic reactions and new approaches to realizing flip flops in
bimolecular reactions. Linear feedback shift registers and FFTs were also demonstrated in bimolecular
reactions. These results have been published in [34]-[39], [58]-[60]. The PI received a new NSF grant on
stochastic digital filters and transforms that started in September 2013.

Riedel: Grant 0845650, CAREER Award: Computing with Things Small, Wet, and Random Design
Automation for Digital Computation with Nanoscale Technologies and Biological Processes''; 9/2009-
8/2014; This award has established novel and transformative approaches to design automation guided by
physical views of computation. A broad theme is the application of expertise from an established field,
digital circuit design, to new fields, such as nanotechnology and synthetic biology. Broader impacts: The
circuit-design community has unique expertise that can be brought to bear on the challenging
computational problems encountered in synthetic biology. Applications in biology, in turn, offer a wealth of
interesting problems in modeling and algorithmic development. With its cross-disciplinary emphasis, this
project will bring new perspectives to both fields. The results have been published in [44], [61]-[76].

