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SHF: Small: Advanced Digital Signal Processing with DNA 

1. Introduction 

It is cliché to begin a CISE proposal with a statement of 
Moore’s Law. And yet, the remarkable and sustained 
exponential pace of progress in computer performance spurs 
all research in the field: our mandate is to produce novel 
ideas to improve the technology, not in its present form, but 
in the form where it will be in 2, 5 or 10 years, as the 
exponential pace of progress continues. 

Due to its digital nature, DNA-based computing is following a 
trajectory similar to silicon-based computing. Indeed, it is 
following a curve called the “Carlson Curve” [1], a 
biotechnological equivalent of Moore’s Law named after Rob 
Carlson. The Carlson Curve predicts exponential (even 
hyper-exponential) decreases in cost and increases in 
performance of DNA-based technologies, such as 
sequencing, synthesis, and computation [2]. 

In a sense, the goals of this proposal are far ahead of the 
curve. This project will pursue the design of advanced and 
complex computation with DNA that is beyond the state-of-
the-art and indeed beyond what current applications call for. Existing applications of molecular computing 
typically call for very simple computation, such as “if condition is true, then activate pathway A; else 
activate pathway B.” Existing technology allows for simple circuits that implement such Boolean logic, 
consisting of a dozen or so biological components [3]-[13]. However, given the trajectory of the field, the 
technology will allow for much more complicated circuits soon. Applications, some of which we can guess, 
others that will emerge unexpectedly, will follow. It is both timely and opportune to consider how to design 
complex circuits with the new technology at the present time. 

This proposal discusses techniques for implementing computation in general, and advanced digital signal 
processing operations in particular, using molecular reactions in general, and DNA-based reactions in 
particular. We consider synthesis of molecular reactions to implement signal processing functions such as 
finite-impulse response (FIR) and infinite impulse response (IIR) digital filters, fast Fourier transforms 
(FFT), and power spectral density (PSD) computations.  

Whereas electronic systems perform computation in terms of voltage, i.e., energy per unit charge, 
molecular systems perform computation in terms of molecular concentrations, i.e., molecules per unit 
volume [14]-[23]. A particularly promising strategy for such computation is based on the mechanism of 
DNA strand displacement [24],[25].  

The goal is no computation per se; molecular systems are inherently slow and inaccurate compared to 
electronic systems. Rather, the goal is construct the biological equivalent of embedded controllers: 
molecular systems engineered to perform useful computation in situ, where it is needed, for instance for 
drug delivery and for monitoring the effectiveness of drug therapy. Consider some potential application 
scenarios. Figure 1 illustrates the filtering of a time-varying concentration of a protein through two 
different frequency bands. The result is either to activate or to inhibit different pathways. The protein may 
be a biomarker for cancer. The result may be the activation of a pathway to produce a chemo drug. In a 
more complicated scenario, a band-pass filtered signal may activate or inhibit a pathway. In a still more 
complex scenario, the ratio of spectral power in two different bands might be the requisite trigger.  

Such scenarios, although hypothetical, are motivated by exciting recent research [26], [27]. In our own 
recent work [28]-[30], we showed that a ratio of spectral power computed from an electroencephalogram 
(EEG) electrode can predict seizures up to an hour before it happens. We have also identified ratios of 
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Figure 2. Protein monitoring for drug delivery. 
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Figure 1. Activation of two pathways by two 
band-pass filters. 
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spectral power from magneto-encephalograms (MEGs) that can be used as biomarkers for schizophrenia 
[31],[32]. These ratios could be computed using a ratio of the two filtered outputs shown in Figure 1; 
however, computing such a ratio using power spectral density as shown in Figure 2 reduces the 
computation complexity significantly. We recently proposed a low-power architecture for computing the 
power spectral density (PSD) in electronic systems [33]. The Fast Fourier Transform (FFT) is the basic 
building block in the PSD architecture. One of the goals of this project is to demonstrate how to compute 
a power spectral density and a spectral ratio using molecular reactions.  

We distinguish between discrete-time signal processing and digital signal processing. While signals are 
sampled periodically in both systems, the signal is represented as an analog value in the former while the 
signal is quantized to a digital value in the latter. Each has its advantages. Discrete-time signal 
processing systems are similar to sampled data systems and require lower molecular concentrations; 
however, the resolution cannot be precisely controlled. Digital systems are more precise, but require 
higher molecular concentrations, just as digital numbers in electronic systems require multiple bits. A 
major component of this project is to study how to implement analog-to-digital (A/D) and digital-to-analog 
(D/A) conversion with molecular reactions. Such A/D and D/A conversion have not been explored before 
by the molecular computing community. We propose to investigate and implement both discrete-time and 
digital signal processing systems using DNA strand displacement as the target experimental chassis [24], 
[25].  

As principal investigators (Parhi and Riedel), we began working on digital signal processing using 
molecular reactions five years ago. Our efforts have been funded by two NSF grants: an EAGER grant 
(CCF 0946601) during 2009-2011 and another regular grant CCF-1117168 that started in 2011. These 
two grants have allowed us to prove, for the first time, that digital signal processing and sequential 
computations can be implemented using molecular reactions [34]-[38]. These results are significant 
because, unlike electronic systems, molecular computing is inherently asynchronous and parallel: when 
reactants are present, reactions fire at variable rates. Our work demonstrated that, through molecular 
transfer reactions, delay elements can be implemented in a robust manner independent of the number of 
delay elements. We were the first to present synchronized sequential computation with delay elements. 
Our work also demonstrated that, using new bistable molecular reactions based on approaches similar to 
dual-rail logic in electronic circuits, we can implement robust logic gates such as NAND and NOR [29]. 
We also demonstrated the implementation of D flip-flops, and computations such as binary addition, 
linear feedback shift registers and square-root using molecular reactions [39]. This proposal will build on 
the success of our prior and current work and will explore implementation of complex signal processing 
functions for both discrete-time and digital signal processing applications. 

The proposed effort will extend our prior work in two innovative and new directions. First, a complete 
digital signal processing systems implementation will be demonstrated. Such a system will contain A/D 
and D/A converters. Detailed studies of the properties of such systems will be performed, e.g., how the 
resolution correlates with changing molecular concentrations and how robust the designs are to 
parametric variations. These tradeoffs have not been explored before. Second, the project will develop 
faster implementations of discrete-time as well as digital signal processing systems. The main bottleneck 
in prior discrete-time signal processing implementations has been speed. Unlike in electronic systems, 
where the speed is limited by changes in electric charge, the speed in molecular systems is limited by 
changes in molecular concentrations, which are inherently slow. We propose new scheduling approaches 
where multiple computations are mapped into different phases of transfer. This is based on generalization 
of our prior schemes such as the Red-Green-Blue (RGB) scheme and our synchronous scheme, based 
on sustained chemical oscillations. The proposed new scheduling approaches allow computation of 
parallel outputs without increasing the number of delay transfer reactions. We expect to demonstrate that 
this approach can increase the overall sample speed compared to our current and prior work. Reducing 
currently achievable sample periods from 40-80 hours to 4-8 hours will enable experimental 
demonstration of some example signal processing functions using DNA. Furthermore, we will investigate 
tradeoffs in discrete-time and digital implementations of signal processing functions with respect to speed, 
accuracy, and robustness. 
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2. Prior work 

In this section, we describe our prior work on digital logic implementations and discrete-time signal 
processing using molecular reactions and simulation using DNA. In Section 2.1, we briefly describe our 
novel bistable mechanism to implement digital logic gates. These reactions were used to implement other 
complex functions such as D flip-flops, binary adders, square-root units and linear feedback shift 
registers. The details of these implementations have been described in [39]. The main advantage of the 
proposed reactions is robustness. In Section 2.2, we describe implementation of delay elements and 
signal transfer through delay elements using the RGB scheme and the synchronous scheme.  

2.1. Digital Logic using Molecular Reactions 
The most straightforward interpretation of binary values in the context of molecular computation is to 
assign a threshold to the concentration of a designated molecular type [40]. When the concentration 
exceeds a threshold level, the bit is considered a logical 1; otherwise it is considered a logical 0. Although 
such a representation is conceptually simple, it requires external mechanisms for comparing the 
concentration of the designated molecular type with the threshold. Furthermore, it suffers from signal 
degradation over time: unwanted residue accumulates every time a signal value changes, unless there is 
some mechanism to clear the signal. To mitigate these issues, we use a complementary representation 
(reminiscent of a “dual-rail” encoding). For a single bit X, we use two molecular types,  and . The 
presence of  indicates that X is set to 0; the presence of  indicates that X is set to 1. Clearly, and 

 should not be present at the same time or else the value of X would be ambiguous. We use following 
set of reactions to ensure that this does not happen: 

,       ,                                     (1) 

In Reactions (1), a molecule of  combines with a molecule of  to produce a molecule of . This 
molecule of  then combines with a molecule of  or , depending on which it meets first. The choice is 
competitive: both and  are trying to increase their concentration via the intermediary type ; 
whichever has a higher concentration wins. The concentration of the loser effectively drops to zero. So 
this mechanism clears out the leakage of molecular types that would otherwise occur when bits are set. 
We can map Reactions (1) to DNA strand displacements. This bistability forms the basis of our 
representation of a bit. The rate kinetics of reactions (1) have been studied in our publication [39]. 
 
Given this robust representation of binary bits, we demonstrate how to implement logic gates with 
molecular reactions. We only consider two-input gates; gates with more than two inputs can be easily 
implemented by cascading two-input gates. Suppose the inputs of a gate are X and Y, and the output is 
Z. These signals are represented by the concentrations of / , / , and / , respectively. Each one 
of X, Y , and Z is regulated by its own version of the bit operation reactions: 

,       ,           

,       ,                                    (2) 
,       ,           

For each of the four entries in the truth table for the gate, if the value of Z is 1, then molecules of , if 
any, should be transferred to . Similarly, if the value of Z is 0, then molecules of , if any, should be 
transferred to . Let us first consider an AND gate. By definition, either X = 0 or Y = 0 sets Z to 0, which 
means that when either  or  is present,  should be generated and  should be cleared out. This is 
implemented by the reactions  

,                                                       (3) 

Here, and  transfer  to  but keep their own concentrations unchanged. Z is set to 0 if it has 
not already been. Z should be set to 1 only when both X = 1 and Y = 1. This is implemented by the 
reactions 

       ,           ,                                   (4) 
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To simulate the AND gate, we map Reactions (2), (3) and (4) to DNA strand-displacement reactions 
and generate their corresponding ODEs. The results are shown in Figure 3A.The idea can be used for 
implementing OR, NOR, and XOR gates [39]. Reactions in (2) are required for all gates. The special 
molecular reactions for implementing these gates are tabulated in Figure 4. Figure 3 B, C, and D, 
respectively, show the simulation results for OR, NOR, and XOR gates. Any random combinational logic 
can be implemented either by using these primitive gates or by direct synthesis. 

 
2.2. Discrete-time Signal Processing 
A DSP system is composed of two parts: computation 
and memory. The computation part executes arithmetic 
operations such as addition and multiplication, whereas 
the memory part consists of delay elements that store 
signals and transfer these signals to the output of the 
delay element in subsequent cycles. Our prior work on 
molecular DSP has demonstrated methods for 
implementing DSP algorithms using synchronous and 
RGB schemes [38]. In both schemes the computation 
part is implemented by the same set of reactions. The 
difference between these schemes lies in the 
implementation of the delay elements and transfer 
reactions. 
 
One time execution of each computation of a signal processing algorithm is referred as an iteration or a 
computation cycle. In prior work, we have developed an RGB scheme and a synchronous scheme. These 
two schemes differ in how an iteration of computation is completed. In the RGB scheme, three types of 
proteins (R, G, and B) are used. Their absence indicators r, g, and b are used to represent absence of a 
certain protein. Transfer of R to G enabled by the absence indicator b (absence of B), transfer of G to B 
enabled by absence indicator r, and transfer of B to R enabled by absence indicator g complete an 
iteration of computation. In contrast, in a synchronous system, a two-phase clock is used to complete all 
computations and transfer reactions associated with each iteration.  

 
Figure 5. Block diagram for the moving average filter. 

       
 Figure 3. DNA-level simulation results for the logic gates. Concentration values are normalized. 
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Figure 4. Molecular reactions for OR, NOR, and XOR gates. 
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We have demonstrated implementation of discrete-time finite-impulse response (FIR), and infinite impulse 
response (IIR) digital filters and fast Fourier transforms (FFTs) using RGB and synchronous schemes. We 
have shown that synchronous schemes take longer time to complete an iteration but lead to better 
accuracy while RGB schemes are faster but compute 
outputs with less accurate results. Although details of all 
prior implementations cannot be included here due to lack 
of space, we illustrate both schemes using a simple 
example: the moving-average filter. The block diagram for 
the filter is shown in Figure 5. It produces an output value 
that is sum of one-half the current input value and one-
half of the previous value. Given a time-varying input 
signal, , the output signal,  is a moving average, i.e., a 
smoother version of the input signal.  

2.2.1. Synchronous scheme 
Similar to electronic systems, the synchronous scheme 
has a two-phase clock. The clock signal synchronizes 
transfers signals between computation and memory parts. Each delay element in this scheme consists of 
two molecular types,  and . The realization of the moving-average filter in the synchronous framework 
is shown in Figure 6. We assume that a two-phase clock generates and consumes the molecular types R 
and B in alternating fashion. In other words we color-code first and second phase of the clock as R(ed) 
and B(lue). Figure 7 shows the concentrations of R and B as a function of time, for our proposed two-
phase clock. Details regarding how to generate an n-phase clock are given later in this section. 
 
Set of molecular reactions for the synchronous implementation of the moving-average filter are given in 
(5). In the presence of B, the input signal X is transferred to molecular types A and C; these are both 
reduced to half and transferred to D′ and Y, respectively. In the presence of R, D′ is transferred to D. 

Phase 1:               

        

2 C                                 (5) 

             D + B   

Phase 2:                                
 
For a general DSP system, in the first phase of 
the clock, the computation results are stored in 

 and in the second phase the concentration of 
 transfers to . To validate our designs for the 

moving-average filter, the chemical reactions 
were mapped to DNA strand displacement 
reactions, using the method in [25], and their 
kinetic differential equations were simulated.  
 
The simulation results for the moving-average filter are shown in Figure 8. The input is a time-varying 
signal concentration X with both high-frequency and low-frequency components. The output is a time 
varying signal concentration Y. Molecules of X are injected and molecules of Y are collected from the 
system every 80 hours. The figure shows the theoretical output, i.e., an exact calculation of filtering, as 
well as the simulated output. We see that our design performs very well, filtering out the high-frequency 
component as expected. The simulated output concentration does not quite track the theoretical output 
concentration. The explanation for this is that, due to the small overlap of the clock phases, the next 
phase begins before the reactions in the current phase complete. To decrease the overlap between two 
phases of the clock, we can add extra phases and choose two phases in a way to have a symmetric two-
phase clock. For example we can use a 6-phase design and choose phases 3 and 6 of a six-phase 
oscillating pulse as clock signals. Although such an approach is likely to enhance output accuracy, the 

Figure 6. The synchronous implementation for the 
moving average filter. 

Figure 7. Differential equation simulation of the chemical 
kinetics of the 2-phase clock. In principle, the amplitude 
and frequency of oscillations can be controlled. 
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sample period would be substantially increased as more transfer reactions need to be completed within 
the iteration. In electronic circuits, a clock signal is generated by an oscillatory circuit that produces 
periodic voltage pulses. For a molecular clock, we choose reactions that produce sustained oscillations in 
terms of chemical concentrations. With such oscillations, a low concentration corresponds to a logical 
value of zero; a high concentration corresponds to a logical value of ‘1’. 
 
Techniques for generating chemical oscillations are well established in the literature. Classic examples 
include the Lotka-Volterra, the “Brusselator”, and the Arsenite-Iodate-Chlorite systems [41], [42]. 
Unfortunately, none of these schemes are quite suitable for synchronous sequential computation: we 
require that the clock signal be symmetrical, with abrupt transitions between the phases. Here, we 
present a new design for an n-phase chemical oscillator (n ≥ 3). The clock phases are represented by 
molecular types , , ..., . First consider the Reactions in (6) and (7). 

 ,    ,  … ,          (6) 

  ,     ,  … ,               (7) 

In reactions (6), the molecular types , , ..., are generated slowly and constantly, from source types 
, , ...,  whose concentrations do not change with the reactions. Here, all reactions are expressly 

designed to have two reactants; this permits us to map the reaction to DNA strand displacement reactions 
effectively. In reactions (7), the types , , ...,  quickly consume the types , , ..., , respectively. 
Call , , ...,  the phase signals and , , ..., the absence indicators. The latter are only present in 
the absence of the former. The reactions 

  ,     ,  … ,               (8) 

transfer one phase signal to another, in the absence of the previous one. The essential aspect is that, 
within the , , ...,   sequence, the full quantity of the preceding type is transferred to the current type 
before the transfer to the succeeding type begins. To achieve sustained oscillation, we introduce positive 
feedback. This is provided by the reactions:  
 

 ,      ,        

 ,      ,        

 

 ,    ,                                                   (9) 

Consider the first three reactions. Two molecules of  combine with one molecule of  to produce three 
molecules of . The first step in this process is reversible: two molecules of can combine, but in the 
absence of any molecules of , the combined form will dissociate back into . So, in the absence of , 
the quantity of will not change much. In the presence of , the sequence of reactions will proceed, 

 
Figure 8. DNA-level simulation of the moving average filter implemented using synchronous scheme. 
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producing one molecule of  for each molecule of  that is consumed. Due to the first reaction, the 
transfer will occur at a rate that is superlinear in the quantity of ; this speeds up the transfer and so 
provides positive feedback. Suppose that the initial quantity of  is set to some non-zero amount, and the 
initial quantity of the other types is set to zero. We will get an oscillation among the quantities of , , ..., 

. One requirement for a clock in synchronous computation is that different clock phases should not 
overlap. In a two-phase clock for synchronous structures: concentrations of molecular types representing 
clock phase “0” and clock phase “1” should not be present at the same time. To this end, we choose two 
nonadjacent phases,  and  in a four-phase oscillator, as the clock phases. For a clearer illustration, 
we use R(ed) to denote  and B(lue) to denote .Our scheme for chemical oscillation works well. 
 

2.2.2. RGB scheme 
Unlike the synchronous scheme the RGB scheme does not require a global clock; rather it is “self-timed” 
in the sense that a new phase of the computation begins when an external sink removes the entire 
quantity of molecules Y, i.e., the previous output value, and supplies a new quantity of molecules X, i.e., 
the current input value. 
 
The moving-average filter in this framework is shown in 
Figure 9 and can be implemented by the reactions in Figure 
10. The molecular types corresponding to signals are X, A, 
C, R, G, B, and Y. To illustrate the design, we use colors to 
categorize some of these types into three categories: Y and 
R in red; G in green; and X and B in blue. The group of the 
first three reactions shown in the S1 column of Figure 10 
transfers the concentration of X to A and to C, a fanout 
operation. The concentrations of A and C are both reduced 
to half, scalar multiplication operations. The concentration 
of A is transferred to the output Y, and the concentration of 
C is transferred to R. The transfer to R is the first phase of 
a delay operation. Once the signal has moved through the 
delay operation, the concentration of B is transferred to the 
output Y. Since this concentration is combined with the concentration of Y produced from A, this is an 
addition operation. The final group of three reactions shown in the S1 column of Figure 10 implements the 
delay operation. The concentration of R is transferred to G and then to B. Transfers between two color 
categories are enabled by the absence of the third category: red goes to green in the absence of blue; 

green goes to blue in the absence of red; and blue goes to red in the absence of green. The reactions are 
enabled by molecular types r, g, and b that we call absence indicators. The absence indicators ensure 
that the delay element takes a new value only when it has finished processing the previous value. 

Figure 9. The moving average filter 
implemented in RGB scheme. 

 
Figure 10. Set of molecular reactions for the RGB implementation of the moving average filter. 
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Table 1. Comparison for moving average, biquad, and RFFT in 

synchronous and RGB schemes. 

system scheme no. of 
reactants 

no. of 
reactions 

Sample 
period 
(hrs) 

% error 
(

 
moving 
average 

Sync. 22 29 80 4.21 
RGB 16 24 20 5.67 

biquad Sync. 37 44 80 8.63 
RGB 32 46 50 12.79 

RFFT Sync. 119 202 900 7.8 
RGB 213 225 425 22 

 

The simulation result for the RGB 
implementation of moving average filter is 
shown in Figure 11. Like the synchronous 
scheme the input signal contains both high 
frequency and low frequency components. 
Molecules X are injected into the system 
and molecules Y are collected from the 
system every 20 hours. We see that our 
design performs well, attenuating the high-
frequency component. The simulated 
output concentration does not quite track 
the theoretical output concentration; it is 
higher than it should be for high input 
concentrations. The explanation for this is 
that, for high input concentrations, the 
reactions fire quickly, so the computational 
cycle completes early. Before the next cycle 
begins, some “leakage” of the output 
concentration occurs. 
2.2.3. More Complex Applications 
Based on the previous frameworks we investigated the biomolecular implementation of two more complex 
applications: biquad filter and fast Fourier transform (FFT).  Due to lack of space in the proposal the 
details of these implementations are not included. The details of these reactions have been presented in 
[34] and [38]. The biquad filter is an infinite-impulse response filter and contains feedback. The FFT 
computes the Fourier-domain representation of a time-domain signal. Although the computations are 
feed-forward, this requires molecular implementation of switches or multiplexors. 
 
Table 1 compares the simulation results of the three operations,namely, the moving-average filter, the 
biquad filter, and the real FFT (RFFT) 
transform, in both the synchronous and RGB 
frameworks. The real FFT computes the FFT 
of a real signal. The error in this table is 
computed as the difference between the 
output value obtained by simulation, , and 
the theoretical output, . Table 1 shows that 
the synchronous scheme has lower error. On 
the other hand, it is slower than the RGB 
scheme. Although the in-vitro simulation 
results using DNA strands validate the 
functionality of the methods, it is essential to 
improve their speed and robustness. 
Proposed efforts to overcome these barriers 
are described in next section. 
 
3. Proposed work 

Prior work in our group has provided a framework for synthesizing DSP operations with molecular 
reactions. The proposed project will build upon our prior work and will explore novel methodologies to 
improve robustness, accuracy and speed of the molecular DSP systems. First, digital implementations of 
signal processing functions are proposed. These systems require A/D and D/A conversions. Molecular 
implementations of these systems have never been attempted before. Second, new scheduling 
approaches are presented to reduce the sample period in discrete-time signal processing systems. 

 

 
Figure 11. DNA-level simulation of the moving average filter 
implemented in RGB scheme. 



9 

DACADC

output

Digital Logic
Circuit

input

Figure 12. Proposed digital Framework for 
biomolecular discrete-time signal processing. 

+

+

x

x

i2

i1

i0

output
4

2
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Figure 14 . Proposed ADC circuit. 

3.1. Fully-Digital Signal Processing 
Designing a robust DSP system with biomolecular 
reactions is very challenging. For the discrete-time 
systems described in previous sections, the speed and 
output error vary depending on the input and 
intermediate signal values. This is because the reaction 
rates are proportional to the concentration of the 
participating molecular types. To improve robustness, we 
propose to develop a framework to implement DSP 
operations in a fully-digital manner. Figure 12 illustrates the general structure of our design. Proposed 
objectives include: design and implementation of robust and fast arithmetic operations in this framework, 
analog to digital converter (ADC), and digital to analog converter (DAC). Based on our preliminary work, 
we present a proof of concept for molecular implementation of these building blocks. It may be noted that 
the molecular reactions are implemented using a clock generated using a synchronous scheme.  

3.1.1. DAC and ADC 

Digital to Analog converter (DAC). Figure 13 illustrates 
the proposed DAC circuit for a 3-bit data. The required 
arithmetic operations (addition and multiplication) for this 
circuit are well defined in prior work [24]. The conversion 
must be fired to completion when the clock is nonzero. 
The output value is collected when the clock is zero. 
Reactions in (10) represent an abstract implementation 
of DAC. 

  ,        ,              (10) 

Analog to digital converter (ADC). For the molecular ADC we apply the idea of successive-
approximation-register (SAR) [43] used in electronic ADCs and adapt it in a way that can be efficiently 
implemented by molecular reactions. Compared to other ADCs, SAR has some advantages for electronic 
as well as molecular implementations. First, this approach does not require a counter. Second, the time to 
convert an analog value to digital is independent of the signal value. Figure 14 shows the proposed ADC 
in detail. In this figure SR is a shift register with the initial value of “100”. R is a register initialized by “000”. 
The DAC inputs are connected to the bit-wise addition of SR and R. During the first clock pulse the output 
of the DAC, or the inverting input of the 
comparator, is 4. Thus, the sample of a 
discrete-time input signal is compared with 
4 and if it is greater than 4, the 
comparator’s output is set to ‘1’. In this 
case the nonzero value of  (bit 2 of 
register SR) is copied to  (bit 2 of 
register R) and sets its value to ‘1’. 
Otherwise, if the DAC output is less than 4, 

 remains ‘0’. Transfer of  to  is 
implemented by the following chemical 
reaction: 

                    (11)

In reaction (11),  corresponds to an 
enable signal. At the next clock pulse the 
content of the SR changes to “010”. Then 
the DAC input is “010” or “110” depending on whether is ‘0’ or ‘1’, respectively. Therefore, the analog 
input signal is compared to 2 or 6 depending on the  value. If the value of input signal is greater than ‘1’ 

 is copied to . Otherwise  remains ‘0’. Finally, in the same manner, the value of  is determined 
during the third clock pulse. Therefore, the 3-bit digital equivalent for the current sample of the discrete 
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time input is available as “ ”. Note that for each new input sample, R must be reset at the beginning 
of the conversion. 

Each element in the ADC circuit will be implemented by molecular reactions targeting the DNA-strand 
displacement reactions. We will use a clock similar to the two-phase synchronous clock. Register, R, and 
shift register, SR, can be implemented using D flip-flop. In prior work, we have demonstrated 
implementation of D flip-flops by molecular reactions [39]. 

For the comparator, based on our prior work [44], we develop a construct that compares the quantities of 
two input types and produces an output type if one is greater than the other. We now describe how this 
can be achieved.  First we sample the input signal, in, and the DAC output signal, dac, in Figure 14 using 
the reactions in (12). The sampling reactions should be fast enough to complete by the current clock 
phase.

   ,                                       (12) 

Then we compare the samples  and  by consuming them via the following reaction: 

.       (13) 

We assume that the reaction fires to completion. The result is that there are only molecules of  left, or 
only molecules of  left, or no molecules of  or  left.  Molecules of the type that originally had a 
larger quantity will persist. If the quantities are equal, then both types are annihilated. In order to 
determine which type is completely annihilated, we need to generate the absence indicators and , 
respectively, for samples  and . 

     ,    ,     (14) 

Reaction (15) produces the molecule En if the sampled value from the input is greater than the sampled 
value from the DAC’s output. 

         (15) 

Finally, for robustness and to enable start of the next comparison, we use the following reaction to 
destroy  in the case that the asserted condition is not true: 

    , .     (16) 

For the central part of our structure, we use a very robust molecular implementation of logical circuits 
based on the approach discussed in Section 2.1 for binary representation. One should note that the 
proposed complementary bit representation can be easily applied to the ADC and DAC parts.  

3.1.2. Digital Filter design. Constructs for ADC, digital logic, 
and DAC will be used in combination with a synchronous 
clock to demonstrate a digital filter implementation. A simple 
3-tap FIR filter is shown Figure 15. The main components of 
the digital filter are delay units, adders, and constant 
coefficient multiplication. Here, delay elements are W-bit 
registers where W is the number of bits, also referred to as 
word-length. A W-bit register consists of W D flip-flops. 
Therefore, delays and adders can be implemented based on constructs from our prior work. 

Consider the number  as the constant 
coefficient in the FIR filter. Now the multiplication , where  
is a variable data can be expressed as . 
It is clear that constant multiplication can be carried out by 
adding a number of partial product terms corresponding to the 
nonzero bit positions in the constant multiplier. The number of 
add operations required equals one less than the number of 
nonzero bits in the constant coefficient. The constant coefficient 
can be encoded such that it contains the fewest number of 
nonzero bits. This can be accomplished using canonic signed digit (CSD). In CSD representation each bit 
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Figure 18. 4-phase scheduling. 
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Figure 19.  RGB and 4-phase timing. 

is in the set {-1,0,1} instead of {0,1} for common 2’s 
complement representation. In fact, the multiplication 
for CSD multiplier is calculated by adding or subtracting 
partial product terms. The properties of CSD 
representation, an algorithm for computing the CSD 
format of a number and how to convert a 2’s 
complement representation to CSD are described in 
[45]. As an example for the number 1.01110011 in 2’s 
complement format, the CSD representation is 

. (Here  denotes the bit value of -1). In this 
case the number of nonzero bits is reduced from 6 to 4. 
The multiplication  can be 
computed as illustrated in Figure 16. We can apply the 
Horner’s rule for precision improvement and tree-height 
reduction technique for latency reduction [46]. The 
improved CSD multiplier is shown in Figure 17. Molecular implementation for other types of multipliers 
such as Baugh-Wooly [46] can be investigated.  

While these filter optimizations are well known in electronic circuits, the impact of these tradeoffs in 
molecular implementations has not been explored. Various optimization approaches will be implemented 
in DNA and their tradeoffs with respect to speed and accuracy will be investigated. 

Adaptive digital filters cannot be implemented using fixed coefficients. In these systems, the coefficients 
are adapted. Thus, the multipliers need to be programmable. Various programmable multipliers such as 
modified Booth recoded Wallace tree have been used in electronic implementations. We propose to 
simulate these multipliers using molecular reactions for implementing an adaptive digital filter.  

3.2. High-Speed Discrete-time Systems using DNA 
The proposed work will investigate implementations of parallel signal processing systems using DNA to 
increase achievable sample rates. We argue that computation of multiple outputs in parallel will reduce 
the sample period since the number of delays does not change in these computations and the completion 
time for the transfer reactions stays about the same. Since computations are fast, the effective sample 
period can be reduced as the level of parallelism increases. This, however, increases the number of 
reactions. The basic approach involves mapping computation of different outputs to various phases of the 
computation cycle. Multiple outputs can be computed in parallel either using the RGB scheme or a 
synchronous scheme. We illustrate computation of the parallel FIR filter using the RGB scheme. We also 
propose a new 4-phase scheme to implement discrete-time signal processing systems. Then we describe 
how parallel outputs can be computed using the proposed 4-phase scheme. 

3.2.1. Fast DSP using a 4-Phase Scheme 
We illustrate a new 4-phase clock-free scheme where we implement 
delay elements using two molecular types. A synthesis approach for 
mapping any DSP algorithm to molecular reactions in the 4-phase 
scheme is described below: 
1- Draw the data flow graph (DFG) according to the block diagram of 
the DSP algorithm. Replace the input node  by nodes  and , 
output node  by nodes  and , and each delay element  by a pair 
of nodes  and . 
2- Assign phase 1 to the outgoing edges of the node ,  and the 
outgoing edges of each  node. 
3- Assign phase 3 to the fan out edges of the nodes ,  and All 
edges between and . 
4- Consider additional nodes  and .  transfers to 

 and  transfers to  at phases 2 and 4, 
respectively. 
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Figure 20. A three-tap FIR filter: (a) Block diagram, 
(b) 4-phase scheme (c) Data flow graph and scheduling 
based on the proposed method. 

5- The molecular reactions for absence indicators, computations, and signal transfers are synthesized 
according to the assigned scheduling phases. 

It noticeable that in an asynchronous scheme, edges of 
two consecutive phases cannot be directly connected 
[37]. Here phases 2 and 4 are introduced to separate 
phases 1 and 3. Figure 18 illustrates the a 4-phase 
scheduling scheme. Signal transfers in each phase are 
triggered by the absence indicators (dashed arrows) of 
the previous phase. The concept for absence indicators 
is described in [37]. The concentrations for  and  
are independent of the input signal value. Therefore, 
they can be very small. This is key to faster phases 2 
and 4. However, in the RGB scheme the complete 
signal value transfers in each phase. Thus, none of the 
phases can be shrunk. Figure 19 illustrates how a 
computing iteration in the proposed 4-phase scheme 
can be faster compared to the RGB scheme. We 
illustrate the synthesis method for an FIR filter. 
FIR filter. Figure 20(a) shows a three-tap FIR filter. For 
simplicity, all tap coefficients are assumed to be 1. The 
flow graph in Figure 20(b) illustrates the phase 
assignments. Reactions in (17) provide absence 
indicators for the flow graph. First reaction in (17) 
slowly generates the absence indicators for each 
phase. In the remaining reactions of (17), the source 
molecules of signals are transferred in each phase 
quickly, and the absence indicator of that phase is 
consumed. 

                           Phase 2:                   

Phase 1:                                   Phase 3:                    

                  

                                                                                                                        (17) 

                                                                     

                                                       Phase 4:                    

The reactions (18) provide the signal transfers associated with corresponding absence indicators. Signal 
transfers of each phase are enabled by the absence indicator of the previous phase. Note that these are 
all slow reactions. 

Phase 1:                  Phase 2:               

                     Phase 3:     (18) 

                                                    

Phase 4:                                                    

                                                                                                           

According to reactions (17) and (18), molecules of , , , and  transfer in the first phase. After all 
molecules of , , , and  are transferred, phase 2 starts and  is transferred to . In phase 3, , 

, and  transfer, respectively, to , ,  and . Concentration of and are stored to be used 
for the computation of the next output. Thus, each pair of and  ( ) function as a delay element. 
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Figure 21. 2-parallel flow graph of the 3-tap FIR filter. 
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(a)             (b)      

Figure 22. 4-parallel flow graph for the 3-tap filter in: (a) RGB scheme, (b) 4-phase scheme. 

3.2.2. High-Speed by Parallelism.  
Using the circuit-level techniques [47], we can speed up the molecular reactions by parallel computing 
either in the context of RGB scheme or the proposed 4-phase scheme or a synchronous scheme. 

Figure 21(a) illustrates a 2-parallel version of the 3-tap filter in Figure 20(a). The scheduling to compute 
two parallel outputs is shown in the Figure 21(b). Instead of one input sample, two input samples are 
processed per each 4-phase cycle. The parallelization level can be increased arbitrarily. For example 
Figure 22 illustrates a 4-parallel implementation of the 3-tap filter using RGB and 4-phase schemes. Both 
of these schedules include two delay elements. The number of delay elements is same as the original 
flow graph for the 3-tap filter. Here the overall computational rate increases by factor of 4, compared to 
the original implementation. Unlike electronic circuits, parallelism in molecular systems doesn’t increase 
the cost of implementations as reactants are available in abundance.  

3.3. Power Spectral Density (PSD) Computation.  

PSD represents the power of the input signal over a 
range of frequencies. Molecular implementation of the 
PSD has a potential role in many applications such as 
protein monitoring, drug delivery, disease state 
measurement, etc. The PSD of a signal is the Fourier 
transform of the auto-correlation of the signal. There 
exist different methods to compute or estimate the 
PSD. Due to the availability of computationally-efficient 
FFT algorithms, the periodogram approach is often 
preferred to other approaches. The widely used 
method to compute PSD is the Welch method [48] 
which is a modified periodogram approach. FFT is the core part of the Welch method. In general, as 



14 
 

 
Figure 25. Bidirectional filter proposed in [33] for 

the PSD computation. 

 

Figure 24. Using two consecutive -point FFTs in 
order to compute one N-point FFT. 

illustrated in Figure 23 an overlap of 50% is used when dividing the input signal into multiple segments. In 
[33], we propose an architecture that reduces the number of operations required to compute the PSD. 
The proposed architecture requires a -point FFT instead of 
an N-point FFT block, where N is the length of the window.   

The main idea is to reuse the -point FFT from the previous 
segment by moving the windowing operation into the 
frequency domain. This is only practical when the window 
functions are represented by raised cosine functions. The 
window operation in time domain is converted to a 
convolution operation in the frequency domain and is 
implemented by a symmetric 3-tap or 5-tap FIR filter using 2 
or 3 multipliers, respectively. The low-complexity of the 
frequency-domain convolution with a short filter is the key to 
reduction in complexity of the PSD computation. Figure 24 
illlustrates this idea. For FFT blocks efficient architectures 
for real-valued signal presented in [49] and [50] are used. 

In the proposed approach, the even samples are computed 
exactly, while the odd samples require a shift by a half-
sample delay. The method uses a bidirectional filter 
approach to implement the half-sample delay filter. Figure 
25 shows the structure of the bidirectional filter used in [33]. 

4. Schedule 
This three year project will address molecular 

implementation of digital and discrete-time systems. Year-1 
will be demonstrate ADC and DAC implementations by 
molecular implementations, and faster implementations by using the proposed 4-phase scheme. Year 2 
will be devoted demonstration of fully-digital building blocks for functions such as multipliers, dividers, 
digital filters, and FFTs using DNA; and parallel implementations using RGB and 4-Phase schemes. Year-
3 will be devoted to the demonstration of PSD using discrete-time and digital approaches. 

 
5. Broader Impact of Proposed Research 

If successful, the proposed research will transform molecular computing research for domains such 
as drug monitoring and drug delivery. Currently, an ineffective and ad-hoc approach prevails, where only 
very simple circuits implementing logical conditions such as “if-then-else” are considered. Our research 
will open up the field by permitting robust computation of time-varying functions. The full expertise and 
experience of the discipline of digital signal processing (DSP) will be brought to bear on important 
problems. Instead of approaching drug therapy as an exercise in collecting data, computing offline (i.e., 
electronically or by consulting a human expert), and then delivering drugs, new systems of autonomous 
molecular therapy will be engineered. 
6. Minority Involvement Plan/Outreach/Education 

The investigators will work with the University of Minnesota’s College of Science and Engineering 
Diversity and Outreach program to involve underrepresented students in research. This program 
manages the NSF-funded North Star STEM Alliance--Minnesota’s Louis Stokes Alliance for Minority 
Participation (LSAMP). One of the core principles of the Diversity and Outreach program is that Mentoring 
and introduction of research opportunities early in the undergraduate career is the best practice for 
retention. Through participation in the North Star programs, the students will present their research to 
North Star fellows to demonstrate their research. They can choose from a selection of outreach events 
that are provided by the North Star program including a Kickoff Day at the beginning of each year and a 
spring symposium in the spring semester to showcase research opportunities at the university.  Each 
student will participate in one of these events during their fellowship. The undergraduate students 
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attending these presentations are encouraged by North Star program to seek research positions in labs. 
North Star also supplies funding for underrepresented students to attend conferences when mentored by 
a graduate student to increase the exposure of the students to the research community beyond the 
University’s laboratories. The PIs will engage a student from the North Star program. 
6.1 K-12 outreach plan 

The College of Science Engineering (CSE) offers a summer high school student outreach program, 
“Exploring Careers in Engineering and Physical Science (ECEPS)”. This program offers students hands 
on introduction to engineering, science and math opportunities on the University of Minnesota Twin Cities 
campus by providing the students tours, along with short projects, in different labs around the campus. 
This program is designed to appeal to and reach both girls and underrepresented minorities with an 
interest in the STEM disciplines. In particular, two of the four possible one week sessions are devoted to 
girls only. The PIs will participate in this program to increase the involvement of high school students in 
the engineering program. This involvement will inspire high school students to be interested in science 
and technology. 
6.2 Integration of Research into Course Curriculum 

The results of this research will eventually be integrated into two graduate courses: EE-5393 
“Circuits, computation and Biology” and EE-5329 “VLSI Signal Processing” taught by the investigators at 
the ECE department at the University of Minnesota. These classes typically involve course projects. 
Portions of the research can be used as course projects in these classes. 
7. Results of Prior NSF Support 

Parhi: The PI has recently completed two NSF grants. Award CCF-0811456: Collaborative 
Research: CPA-DA: Noise-Aware VLSI Signal Processing: A New Paradigm for Signal Processing 
Integrated Circuit Design in Nanoscale Era, 9/1/2008-8/31/2011. The EAGER grant CCF-0946601: 
EAGER: Synthesizing Signal Processing Functions with Biochemical Reactions (with M. Riedel) started 
on 8/1/09 and ended on 7/31/2011. CCF-0811456 grant has enabled us to create a tool for estimation of 
power consumption by estimating switching activity in arithmetic circuits to reduce power consumption in 
frequency-selective FIR filters by correction circuitry, and to improve reliability of demodulation in 
orthogonal frequency division multiplexing (OFDM) systems. The robust demodulation work enabled 
removing sparse impulse noise without assuming a prior model of the probability density function (pdf) of 
the impulse noise as assumed in prior models. These results have been published in [51]-[57]. The 
EAGER grant on bimolecular signal processing allowed us to prove that signal processing can be 
implemented using chemical and molecular reactions in general and DNA strands in particular. This was 
the first attempt to prove that discrete-time signal processing systems can be implemented in DNA 
strands. This work also led to new digital logic reactions and new approaches to realizing flip flops in 
bimolecular reactions. Linear feedback shift registers and FFTs were also demonstrated in bimolecular 
reactions. These results have been published in [34]-[39], [58]-[60]. The PI received a new NSF grant on 
stochastic digital filters and transforms that started in September 2013.  

Riedel: Grant 0845650, CAREER Award: Computing with Things Small, Wet, and Random Design 
Automation for Digital Computation with Nanoscale Technologies and Biological Processes''; 9/2009-
8/2014; This award has established novel and transformative approaches to design automation guided by 
physical views of computation. A broad theme is the application of expertise from an established field, 
digital circuit design, to new fields, such as nanotechnology and synthetic biology. Broader impacts: The 
circuit-design community has unique expertise that can be brought to bear on the challenging 
computational problems encountered in synthetic biology. Applications in biology, in turn, offer a wealth of 
interesting problems in modeling and algorithmic development. With its cross-disciplinary emphasis, this 
project will bring new perspectives to both fields.  The results have been published in [44], [61]-[76]. 

 
 


