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Project Details:

1. Provide details of your project:

Research project name: UMN-Mayo Computational Human Immuno-Peptidome (CHIP) Project

Project expected start date:7/1/22

Proposed project duration (up to 12 months): 6/30/23

Project executive summary (3-4 sentence overview of your project):

This project tackles a grand challenge in computational science: predicting how strongly peptides

derived from viral proteins will bind to cell-surface molecules as part of our immune response.

The set of all the peptides that bind strongly is called a person’s immunopeptidome. This set is

unique and determines the capacity of their immune system.

The immune response to a virus such as SARS-CoV-2 hinges on whether the viral protein

fragments bind into a groove in these cell-surface proteins – like a key into a lock. The problem is

that simulating the binding of a single pair of molecules takes hours, or even days, on a powerful

computing cluster with existing approaches. There are millions of pairs.

In this research we will develop new, highly targeted algorithms to make the computation

tractable. We will turn billions of days of computing into millions of minutes, and solve the

problem by deploying the algorithms at scale on Oracle’s cloud-computing infrastructure,

completing the task in weeks.

Research public relevance, project description and goals:

The Grand Challenge

Perhaps more so than for any other discipline of science or engineering, the history of computer

science has been one in which problems seem impossible until suddenly they are not.

Translating languages, playing chess, recognizing objects, driving cars – all at first seemed so

daunting that experts gave these as examples of tasks that computers might never be able to do

as well as humans. Of course, none of these problems were solved “suddenly” with a single

keystroke. In all cases, it was decades worth of concerted research, down blind alleys and with

major paradigm shifts, that brought solutions. Raw computing power alone did not solve these

problems; however, the tremendous increase in computing power that preceded these

breakthroughs enabled them.

This proposal discusses a problem that computer science currently judges to be very difficult. It

is a foundational problem in computational immunology which, if solved, could inform



predictions of disease severity, enable

treatments, and guide vaccine

development. While such aspects of a

pandemic response ultimately depend on

experimental knowledge and trials, the

computational results that we are

proposing could play a critical role at two

ends of the time spectrum:

• In the early phases, when identifying

and characterizing the threat a new

pathogen.

• In the long term, to develop a deep

understanding of the molecular

mechanisms of the infection.

Narrow Statement of Grand Challenge

Problem

Stated succinctly, the computational problem that we will tackle is determining how strongly a

given molecule binds to another. The given molecule is a peptide – a fragment of a protein

derived from a pathogen, such as a virus. The other is a molecule called Major Histocompatibility

Class I (MHC I) that is expressed on the surface of most of our cells. MHC I molecules have a cleft

into which a peptide can bind. As illustrated in Figure 1, a peptide will only bind if it fits into the

cleft like a key into a lock. The binding of a peptide to an MHC I molecule is a critical step in a

critical component of the immune system, so-called cellular immunity.

Explained succinctly, cellular immunity allows circulating T-cells to kill off infected cells. When a

cell is infected with a virus, it hijacks the host cell’s machinery, forcing it to make viral proteins.

Our cells have a defense mechanism: they chop up such proteins into fragments, called pep-

tides, and transport them to the cell surface, bound to MHC I molecules. Presented this way on

the cell surface, T-cells can identify a cell as being infected and can destroy it using toxins. If this

mechanism succeeds, an infection is stopped in its tracks: T-cells kill off infected cells before they

can do damage. If it fails, then infected cells become factories for re- producing copies of the

virus and full-blown disease results.

Success or failure depends on whether peptides derived from the viral proteins bind to the MHC

I molecules and so become targets. Binding depends on the biochemical affinity between the

constituent building blocks of the pair of molecules. This, in turn, largely depends on molecular

shape: how well the metaphorical key fits into the metaphorical lock. There are many variants of

MHC I molecules, coded for by a person’s genes. These vary, sometimes subtly, in shape.

The set of all the peptides that can bind to a person's MHC I molecules is called their

immunopeptidome. This set is unique and determines the capacity of their immune system.



Since the immune response of a

person to, for instance, a viral

infection like COVID-19 is

dependent on whether their

MHC I molecules present

peptides derived from the virus,

understanding and predicting

the binding step is an important

topic.

What we are proposing here

appears to be a narrowly

defined problem: characterizing

the binding strength between

specific pairs of molecules.

Most aspects of the molecular

biology are well understood.

And yet, we argue that the

problem qualifies as a grand

challenge, in terms of its difficulty and in terms of the impact of a solution. The difficulty lies

with the computational requirements, stemming from the combinatorial scale of the problem.

The impact of the solution will stem from an ability to precisely characterize, in advance and

through purely computational means, how well a person’s cellular immunity will cope with a

novel pathogen.

Simulating molecular interactions has been a widely studied and largely successful topic for

perhaps five decades. Indeed, some of the earliest computers were applied to this problem.

Sophisticated software exists to simulate molecular binding events. The conventional approach

with such tools is to simulate binding from first principles, tracking the trajectories of all the

atoms in all the molecules in three-dimensional space, numerically solving Newton’s equations

of motion. A variety of strategies are used to find low-energy configurations, including

randomization, with so-called Monte Carlo methods. The problem is that simulating a single

peptide-MHC I molecular binding takes hours, or even days, on a powerful computing cluster

with this approach.

The SARS-CoV-2 virus, for example, has 29 distinct viral proteins. When chopped up, this

translates into approximately 38,000 peptides. This is not an unmanageable number. However,

the other side of the equation consists of the MHC I molecules. Every person has up to 6

variants, having inherited 3 from each parent. There are at least 21,000 variants in the human

population. Indeed, the genes that code for MHC I molecules are the most diverse in our

genome. Evolution has ensured this, as humans and pathogens have been co-evolving together.

So, in the narrow formulation of the research problem, there are 38,000 peptides for a virus like

SARS- Cov-2 each paired with 21,000 variants of MHC I molecules in the human population. This



translates to three-quarters of a billion distinct pairings. If one is using existing simulation

software, which requires hours or even days of computing time per pairing, one is confronted

with billions of hours, or billions of days, of computing time -- clearly an intractable proposition.

With this grant, we will develop new, highly targeted algorithms to make such computation

tractable. While existing software for these sorts of atomic simulations is sophisticated, it is

general-purpose, written in FORTRAN decades ago. The most widely used software packages

have been written to simulate molecular interactions of nearly any type, from crystals, to

proteins, to polymer chemistry. Others specifically simulate protein binding. Observing

simulation trials for such general- purpose software, most of the computational time is spent

moving molecules randomly in space, looking for energetically favorable states; most of the

random movement is wasted for this particular problem. Only the final steps, as the peptide

settles into an optimal configuration in the cleft of the MHC I molecule, matter. There is

domain-specific knowledge here that can really help.

Broader Statement of Grand Challenge Problem

The grand challenge that we are positing is much broader than simply writing better algorithms

and deploying the code on supercomputing clusters, although this will be a significant aspect of

the effort. The problem statement is broader in two main respects:

1. Not all aspects of the biochemistry of binding are understood or have been well characterized

from a computational perspective.

2. Structural models do not exist for novel peptides, nor for most variants of MHC-I molecules

that one encounters in the human population.

Needless to say, the biochemistry of the immune system is a complex and vast topic of study by

a large community of experimentalists. We can point to the work of Prof. Mark Davis at Stanford.

His lab has been striving to understand the structural and biochemical underpinnings of peptide

binding for decades.

Our focus is applied, translational, and computational. We aim to incorporate knowledge from

structural and molecular biology into efficient computational models and deliver useful

predictions, at scale. The goal of this grant is not to develop new, experimental or biochemical

knowledge of the immune system, but rather to synthesize and apply knowledge as it evolves.

Beyond detailed and accurate bio-chemical models of binding, a significant challenge for this

research is the availability of models. On the one hand, viral proteins are readily characterized. In

the case of SARS-Cov-2, the virus was first identified in Dec. 2019, By February 2020, the amino

acid sequence of its proteins had already been published. Viral proteins get chopped into

fragments called peptides by intracellular mechanisms, each 8 to 15 amino acids in length. Given

a novel pathogen, most of these peptides will be new to science, having never been encountered

before. (Similarly, such peptides will be new to an individual’s immune system!)



The first challenge is to construct structural models for novel peptides. The second, more

significant challenge is to construct structural models for MHC I molecules. As noted above,

there is tremendous diversity in these molecules, with perhaps 21,000 variants in the human

population. Only a small fraction of these have been characterized experimentally. Doing so

entails significant effort, with experimental techniques such as crystallography and mass

spectrometry. This has led to an unfortunate social consequence: nearly all of the variants of

MHC I molecules that have been characterized experimentally are those found predominantly in

people of European descent. Addressing this inequity will be a significant focus of our activities.

This project will pursue a novel strategy for constructing structural models of variants of MHC I

molecules that are not available. Instead of waiting for them to be characterized experimentally,

we will construct the models de novo. We will do so first by homology: beginning with a

structural model for an MHC I molecule that it most closely resembles, we will construct a model

for a new MHC I molecule by substituting amino acids.

This is illustrated in Figure 2. Here we will apply domain-specific expertise, provided by Prof.

James Cornette from Iowa State University. (He is not a PI on this grant, but he is a close

collaborator.) While all MHC I variants have different shapes, their overall structure is similar;

differences are primarily in the location of side chains. These structural differences can be

inferred.

Given a de novo model of an MHC I molecule that is accurate in terms of its atomic

configuration, we will apply computing power to fold it into its actual shape. Here we will make

use of the latest breakthrough, AlphaFold, an AI-based solution recently announced by Google’s

Deepmind project.

Perhaps the most ambitious aspect of this project, and the aspect that qualifies it as a Grand

Challenge, is translating the computational modeling into practice. Of course, we emphasize that

the computational challenge is significant; it will require the deployment of Oracle's cloud power

to be realized. Characterizing the immuno-peptidome will not be a separate activity from

applications. Rather, there will be tight synergy between the computing team and the

practitioners.

2. Please summarize any prior work in this research area and state how this project will build

upon and/or differentiate itself from existing work:

Prior Work and Expertise

The proposed research is targeted and focused on delivering outcomes that will aid in pandemic

preparedness. However, our approach is ambitious, aiming to develop a very general capability

in computational immunology. It builds upon expertise and prior research in the Vasmatzis lab at

the Mayo Clinic in genomics and computational techniques for cancer immunotherapy; work in



the Block lab at the Mayo Clinic on patient immune response monitoring for SARS-CoV-2; as well

as expertise and prior research by Julia Udell in graft-versus-host predictions at “Be-the-Match.”

A premise is the deployment of high-performance computing. Prof Riedel’s experience with

circuit design and molecular dynamics will be brought to bear on this aspect. This project will

provide the computational infrastructure to predict whether peptides derived from viral proteins

will bind to allelic variants of MHC I molecules. The same computational infrastructure could be

deployed for other pathogens. It could also be transformative in other contexts, for instance for

treatments of cancer via immunotherapy as well as for the treatment of autoimmune diseases.

Capitalizing on our past experience in modeling MHC-peptide complexes; monitoring of immune

responses to peptide vaccines; our ability to develop fast computational algorithms and

pipelines; and our access to clinical data, we are poised to develop transformative tools and

deliver critical information for pandemic preparedness, adhering to a tight timeline.

We have assembled a strong multidisciplinary team that, combined, has both breadth and depth

of expertise in computational biology, genomics/bioinformatics, immunology, graphics,

computer science and high-performance computing.

Dr. Vasmatzis from theMayo Clinic and Prof. Jim Cornette from Iowa State University have

been involved in pioneering work related to peptide-MHC binding predictions, TCR and antibody

structure prediction, and modeling statistical potentials of atomic interactions. The Vasmatzis lab

at Mayo Clinic also has expertise in developing highly sophisticated genomics pipelines. For

example, the group has developed a pipeline that allows the accurate determination of

tumor-specific neoantigens based on tumor-specific DNA junctions that are often the source of

neopeptides in tumors. Their technique, called MPseq, detects with high sensitivity, specificity

and cost-effectiveness many complex rearrangement events such as chromoplexis and

chromothripsis. These truncate highly expressed genes and result in altered protein sequence

juxtaposed on normal truncated proteins. Their group at Mayo has used this technique for

mesothelioma cases that exhibit a higher potential of rearrangements to produce neoantigens

compared to single nucleotide variants. Also, the group at the Mayo Clinic has world-class

expertise in genomics and sequencing, as well as access to patient data sets needed to validate

the computational results.

Professor Riedel from the University of Minnesota has extensive experience with molecular

computing that can be brought to bear on the research. Funded by seven major NSF grants, he

has spear-headed the development of novel computing constructs with DNA. He currently has a

DARPA grant to develop DNA storage systems. This research is predicated on algorithmic

expertise in molecular simulation and design, adapted by Prof. Riedel from the realm of

electronic circuit design. The circuit-design community has unique expertise that can be brought

to bear on the challenging computational problems encountered in molecular simulation.

Applications in molecular biology, in turn, offer a wealth of interesting problems in modeling and

algorithmic development.



• Prof. Riedel and Dr. Vasmatzis co-advise Julia Udell, a Ph.D. student in the Bioinformatics and

Computational Biology program at the University of Minnesota, who will play a significant role in

this project. She has both computational and immunological expertise, having worked as a bio-

statistician for Stanford’s HLA typing lab prior to beginning her doctorate. She is the author of

the neoantigen-ranking algorithm and will take the lead in applying this algorithm to the

SARS-CoV-2 proteome.

• Dr. Matthew Block is an immunologist and a medical oncologist at theMayo Clinic with an

interest in understanding the mechanisms that influence anti-tumor immunity in patients with

melanoma and ovarian cancer. His research efforts have focused on preclinical translational

studies and therapeutic clinical trials testing novel cancer vaccines and immunotherapies. As

part of his efforts to identify novel immunotherapy approaches to cancer, his laboratory has

developed T cell and antibody-based assays to measure changes in antigen-specific immune

responses using patient samples. With the onset of the COVID-19 pandemic, he has developed

methods to measure immune responses to SARS-CoV-2.

We have relevant expertise from the participants at University of Minnesota and the Mayo

Clinic. We point to collaborative work that we have recently done on an important aspect of the

binding problem, hydrophobicity, as an example. Hydrophobicity plays an important role in

peptide:MHC I binding, yet has not been explicitly considered in computational models. We have

shown how to incorporate it and how this improves binding prediction.

Our “grand challenge” problem is ambitious both from the standpoint of computation as well as

in terms of the requisite expertise in immunology. Our team is uniquely positioned for this

challenge: the researchers at Mayo have expertise in molecular modeling and immunology, as

well as access to clinical data; the researchers at UMN have complementary strengths in

molecular simulation, as well as experience with developing and deploying large-scale

computation projects.

Existing Tools

To our knowledge, no one has attempted to simulate peptide binding at the level of physical

chemistry, at scale, pairing tens of thousands of peptides with tens of thousands of variants of

MHC I molecules. Rather, people have turned to neural networks.

We point to three packages that perform exactly the predictions that we are discussing:

NetMHC, PickPocket, and SYFPETHI. These tools have been used to study cancer immune escape

mechanisms, checkpoint blockade immunotherapy for tumors, and identifying T-cell response

targets. All are efficient, returning binding predictions in a matter of seconds for queries. So, it

might seem that the grand challenge that we are posting has already been solved.

Unfortunately, it has not. These tools are trained with one-dimensional data: text labels for MHC

I molecules, paired with amino acid letter sequences of peptides, scored according to the

experimentally observed binding strength. So, these neural networks are trained on textual data.



The network predicts how strongly a novel peptide will bind to a given MHC I molecule,

according to the similarity of the amino acid sequence only. No information regarding molecular

shape or binding chemistry is used.

These tools are valuable; we have used them extensively in our research. However, the

predictions that they provide are coarse:

1. The neural networks are trained without any data on molecular shape, and without any

reference to the underlying physical chemistry. The inferences that they provide are based on

peptide amino acid sequence only. However, the peptides have three-dimensional shapes. Small

differences in amino acid sequence can translate to very different shapes and very different

binding affinities.

2. The neural networks are trained on experimental data that comes from a wide variety of

domains. For instance, a large fraction of the data for NetMHC comes from studies of proteins

derived from the HIV virus. However, peptides from a novel pathogen such as SARS-Cov-2 might

bear little similarity to these. Most will be new to science. Neural networks perform statistical

inference, interpolating to produce answers. Inferring from data that is too dissimilar from the

target generally yields poor results.

Indeed, acknowledgement that neural networks provide spurious inferences for peptide binding

strength is widely acknowledged. In particular, the tools seem to deliver many false positives. It

is possible that machine learning and neural networks are the right way to attack this problem.

(We are considering such techniques in our approach.) However, training on the letter sequence

of amino acids simply cannot provide reliable answers to complex questions pertaining to

physical chemistry, such as this one. One must incorporate molecular shape and biochemical

aspects of binding into the modeling.

Novelty on Our Approach

With this grant, we will develop and apply a new mechanistic model for predicting peptide-MHC

I binding. In contrast to general-purpose software for molecular simulations, such as CHARMM

and Amber, ours will be specifically optimized for this problem.

The starting point is a three-dimensional molecular model of both the peptide and the MHC I

molecule. We will make use of structural models of MHC I variants that have been characterized

experimentally, through crystallography. When such a structural model is not available, we will

infer it by homology: we will construct it starting from the structural model that it most closely

resembles, substituting structural models of amino acids where it differs. Then we will make use

of existing software for simulating protein folding. So, the starting point for our calculations will

be optimal folded structures for the MHC I molecules. We will follow the same strategy for

generating structural models for the peptides. (These are much shorter, with fairly simple

molecular structures, so this is a much easier task.)



Next, in each simulation, we will position the peptide roughly aligned in the binding pockets. This

is likely the most difficult step, as the optimal position of the peptide might not be known. Here,

we will endeavor to incorporate as much domain-specific knowledge as possible. We anticipate

that intelligent placement of the peptide is the single most important factor in reducing

computation time.

For binding strength, we will implement energy calculations based on a variety of biochemical

factors: electrostatic interaction, acidic/basic pH, hydrogen bonds, van der Waals forces, shape

complementarity, hydrophobicity, p-interaction, steric effects, and solvation energy.

Finally, we will perform a rigorous search

for a minimum-energy binding

configuration. Compared to existing

methods in general-purpose software, we

will reduce the dimensional space by

fixing bond lengths and amino acids

sidechains in advance. Thus, the only

variables that we will manipulate will be

the dihedral angles along the backbones,

as well as the dihedral angles of the

amino acid sidechains. If these moves are

not sufficient, we will also flex the back-

bone of the MHC I molecule.

Instead of carrying out the search in a space with cartesian coordinates, we will do most of the

molecular maneuvering in the torsional space, as shown in Figure 3. That is to say, we will rotate

sidechains instead of randomly displacing and flexing them. Moving in the cartesian space

necessitates tracking 3 x 19 = 57 variables per amino acid; however, moving in the torsional

space necessitates tracking only 3 dihedral angles per amino acid. Furthermore, we can restrict

moves to just the residues present in the binding pockets of the MHC I molecule, reducing the

275 amino acids per MHC I molecule to no more than 70. We can only justify this claim by

developing and deploying the code, but we anticipate that by devising efficient, custom

algorithms, we can turn one billion days of simulation time into one million minutes for our

grand challenge problem, where we are looking at SARS-Cov-2 binding predictions, with 38,000

peptides paired with 21,000 MHC I variants.

Applying the Computational Toolset

As a follow up, using the data and algorithms discussed in the prior sections, we will identify

commonly occurring haplotypes in the U.S. population that may make individuals vulnerable to

COVID-19. We will apply the algorithms that we have developed to predict viral peptide binding

to variants of MHC I molecules across populations. We will reduce the combinatorial space by

concentrating on the low-mutational rate regions of the viral proteins as well as the most

frequent MHC I alleles found in a given population. If we set cutoff thresholds, the numbers



become much more manageable. For example, there are only 374 variants of MHC I molecules

that occur with a frequency above one-in-one-thousand in the U.S. population; only 77 are

above 2% frequency in the U.S. population. These are considerably smaller sets than the 21,000

possible variants discussed above.

Using the algorithms developed, we will identify the variants of MHC I molecules that commonly

occur in U.S. populations, as reported by. We will then identify those that may confer more, and

those that may confer less, protection that average against COVID-19. According to our

hypothesis, individuals with variants of MHC I molecules to which some viral peptides bind

strongly are likely to mount an effective immune response. Those with variants to which all viral

peptides bind only weakly are not. With this data, we can make predictions across sample

populations. These will be validated against any clinical data that is available. (No new clinical

data will be generated.)

3. Provide expected milestones (milestones should outline expected progress at regular intervals

throughout the project):

Milestone #1 summary: Predict disease severity for a new pathogen for different individuals.

Estimated completion date: 9/1/22

Description:

Applications: Early Response & Triaging. Translating the computing results to practice will

generally entail a focus on the individual. As explained above, every person inherits up to 6

distinct variants of MHC I molecules, three from each parent. A form of genetic testing called

human leukocyte antigen (HLA) typing can be performed to establish which variants a person

has. This type of testing is convenient, widely available, and inexpensive, as it is used for

paternity testing. Performing such tests on a large group, say everyone at risk in a pandemic, is

feasible.

With population-wide typing, our computational tools could predict which individuals are most

likely to mount a strong antiviral immune response to a novel pathogen, given their MHC I

variants; these individuals would be at the lowest risk for severe disease. Conversely, our tools

could predict which individuals are least likely to mount a strong antiviral response; these

individuals would be at the highest risk.

Consider the implications for early response and biodefense. With the computational ability that

we will deliver, when faced with a novel biological threat, an early-response team could predict

which of its personnel are likely to have immunity and which might be most vulnerable. This

could be assessed based on prior HLA typing of the personnel. With the computing ability

described above, all that would be required is a proteome profile of the novel virus or bacteria.

Such profiles are usually easy to obtain, often available within weeks when a new pathogen is

identified.



Milestone #2 summary: Predict disease severity for different variants of a virus for different

individuals.

Estimated completion date: 12/31/22

Description:

Applications: Resource Allocation & Population Monitoring. As we have seen with SARS-Cov-2,

viral mutations are perhaps the single greatest confounding factor to a pandemic response. The

more widespread a pandemic, the more hosts a virus infects. With more hosts, there are more

opportunities for it to mutate. Given the extent of the COVID19 pandemic, some virologists have

hypothesized that nearly all mutations favorable to its spread will be discovered by the virus

before the pandemic abates.

Mutations confound a response because vaccines and treatments may be less effective against

new variants. Here our prediction tools could transform both planning and resource allocation.

Once the protein sequence of a new variant is identified, the differences from the original strain

can be analyzed. Differences in the proteins expressed will translate to a different set of

peptides. With population-wide HLA typing, a distribution of MHC I variants can be constructed

for sub-groups -- perhaps different demographic groups in different geographic regions, or

perhaps even a fine-grained map tagging all individuals in the group with their specific MHC I

variants. These MHC variants can be paired up with the novel peptides from the viral variant to

assess the risk of severe disease for the individual. If the analysis is done at the level of a group,

then a statistical analysis of the risk can be performed against the distribution of MHC I

molecules in the group.

Milestone #3 summary: Predict effectiveness of different vaccines for different variants of a

virus for different individuals.

Estimated completion date: 4/1/23

Description:

Applications: Tailoring Vaccines to Individuals. It is likely that future historians will point to this

pandemic as an inflection point for society, not due to the damage that was inflicted, as great as

this has been, but due to the progress made in science as a consequence of it. The development

of mRNA vaccines, in particular, is a startling success story. They have been deployed in record

time, and on an unprecedented scale. Significantly, mRNA vaccines are readily customizable.

Once the infrastructure is developed, different mRNA vaccines could be administered to

different groups at different times, with little extra production cost; all that is required is

swapping out the RNA sequence in the vaccine doses.

This flexibility offers the possibility to administer mRNA vaccines that elicit the best immune

response for each individual, in response to the specific viral variants that pose a threat at that

time. Recall that mRNA codes for proteins, such as the infamous spike protein of the SARS-Cov-2



virus. Dividing proteins into units 8 to 15 amino acids long yields the requisite peptides to target

in mRNA vaccine production. So, our computational tools will allow screening of the peptides of

viral variants, matching of those against MHC I molecular variants, and then choosing which

peptides to target in the vaccine production.

Milestone #4 summary: Launch at-scale simulations for SARS-Cov-2 Peptides. Publish results.

Launch a full website.

Estimated completion date: 6/30/23

Description:

This research will be applied and translational: it will explore the solution to the grand challenge

discussed above and will translate these into aspects of pandemic preparedness such as

predictions of disease severity; resource allocation; and vaccine development.

By the conclusion of the 12-month project, the team will deploy a risk assessment of COVID-19

severity given an individual’s HLA typing. This will be implemented on a web-based platform and

will be available to the public. Users will be able to enter -- or link if available electronically –

their results of HLA typing. The website will provide a summary and detailed analysis of their risk

for COVID-19, based on the binding strength of SARS-Cov-2 derived peptides to their allelic

variants of MHC-I molecules.

(Add additional milestones as needed)


