
Chemical Compiler

Phil Senum

August 25, 2011

1 Introduction

In our previous work, we developed chemical modules to perform specific alge-
braic and computational tasks. Specifically, we have shown ways to operate on
variables represented in a chemical system in unary, including operations such
as copying and decrementing. We gave a brief overview of a method by which
these basic modules could be combined to perform more complicated operations.
In this paper, we describe a process by which these modules may be system-
atically connected into sequential chains of operations to perform sophisticated
arithmetic in a chemical target.

2 System Organization

Traditional compliers operate in the following way:

1. Input, in the form of a human-readable behavioral description, is fed to
the compiler.

2. The compiler transforms the input into computer-readable tokens.

3. Each token is combined with surrounding tokens to form complete state-
ments.

4. Each statement is broken down to machine code, and optimizations are
added.

5. The resulting machine code is optimized further, if desired.

Our compiler uses the same first three steps in its compilation. The last two
are revised. Specifically, instead of breaking down statements into machine code,
statements are broken down into sets of chemical reactions. These chemical
reaction sets, which we call chemical “modules”, are designed to perform specific
algebraic tasks such as addition and subtraction of integer quantities.

Our compiler operates in the following way:

1. Input language, a subset of the C language, is read by the compiler.
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2. The input file is split into tokens; groups of tokens are arranged into a list
of statements.

3. Each statement in the list is split into one or more fundamental statements.

4. The list of statements is made into a directed graph.

5. Each node in the graph is translated into a set of chemical reactions by
picking the appropriate template.

3 Chemical Modules

The design of the chemical modules as described in previous works performed
adequately for the simple operations which we were modeling. However, the
design did not scale well to allow for sequential execution of multiple modules.
Although certain sophisticated operations such as raise-to-power were imple-
mentable, there was a large amount of complexity added to the system that was
not fully understood. Here, we describe a slightly modified set of modules that
perform the same operations, with the advantage of a scalable design.

3.1 Previous Model

In the previous model, several assumptions are made about the input species
and start signal.

1. Nothing else needs to operate on the input species, x, while the module is
operating.

2. The start signal, g, is supplied from a small, fast injection by an external
source.

3.2 Available Operations

3.2.1 Single-Molecule Source Modules

The first set of reactions perform operations based on single molecules of a
source.

3.2.1.1 Copy

a + g + dab
slow−−−→ a′ + g (1)

g + aab
slow−−−→ d (2)

d + d
fast−−→ d (3)

d + a′
slow−−−→ d + a + b (4)

d + g
fast−−→ d (5)

The new model works as follows.

2



1. Assuming the operation has not already been completed, indicated by the
absence of the done signal, dab, the input species, x, is transferred to a
temporary type, x′, in the presence of the start signal, g. This is handled
by reaction 1.

2. Once all of the input species, x, has been transferred to its temporary type,
the done signal, d, is created to indicate the operation has completed. This
is handled by reaction 2.

3. The done signal, d, is maintained at a small quantity. This is handled by
reaction 3.

4. In the presence of the done signal, d, the temporary type, x′, is transferred
back to the input species, x, with a copy being put in the output species,
y. This is handled by reaction 4.

5. The start signal, g, is kept out of the system by the presence of the done
signal, g. This is handled by reaction 5. Under perfect circumstances,
this is not a necessary step. However, due to the nature of the creation
of absence indicators (always created; destroyed in the presence of the
corresponding type), it was observed that reaction 1 would occasionally
fire in the presence of the done signal, d. By keeping the start signal, g,
removed from the system, this is less likely to happen.

Usage of the module is almost the same as the previous model.

1. If present, flush the done signal, d, from the system.

2. Place the species to copy in the input species, x.

3. Make an injection of the start signal, g.

Several assumptions are made about the input species and start signal.

1. Nothing else needs to operate on the input species, x, while the module is
operating.

2. The start signal, g, is continuously supplied by some external source. The
module will operate when the start signal, g, transitions from being absent
from the system to being present in the system.

3.2.1.2 Clear Same as Copy except for reaction 4:

d + a′
slow−−−→ d (6)

3.2.1.3 Double Same as Copy except for reaction 4:

d + a′
slow−−−→ d + a + a (7)
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3.2.2 Double-Molecule Source Modules

These modules perform operations based on pairs of molecules of a source.

3.2.2.1 Decrement

a + g + dab
slow−−−→ a′ + g (8)

g + aab
slow−−−→ d (9)

d + a′ + a′
fast−−→ d + a + a′ + arx (10)

arx
slow−−−→ ∅ (11)

d + arxab + a′
slow−−−→ d (12)

d + d
fast−−→ d (13)

d + g
fast−−→ d (14)

3.2.2.2 Increment Same as Decrement except for reaction 12:

d + arxab + a′
slow−−−→ d + a + a (15)

3.2.2.3 Halve Same as Decrement except for reaction 10:

d + a′ + a′
fast−−→ d + a + arx (16)

3.2.3 Comparison Modules

Note that each comparison module does not specifically implement a “while” or
“if” loop, it simply performs the comparison and branches either into the loop or
past the loop. The difference between the two loops is handled by program flow
control; in the case of a “while” loop, the last statement in the loop branches
back to the head of the loop, whereas with an “if” loop, the last statement
proceeds past the end of the loop.

3.2.3.1 Greater than Zero

g + a
slow−−−→ gnext + a (17)

g + aab
slow−−−→ gskip (18)

gnext + g
fast−−→ gnext (19)

gnext + dlast
fast−−→ gnext (20)
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3.2.3.2 Equal to Zero

g + aab
slow−−−→ gnext (21)

g + a
slow−−−→ gskip + a (22)

gnext + g
fast−−→ gnext (23)

gnext + dlast
fast−−→ gnext (24)

3.2.3.3 Arbitrary Comparison Arbitrary comparison is achieved via a
similar process to the comparison operations described in our previous work.
Each comparand (each side of the comparison) is first copied to a temporary
type, as arbitrary comparison is a destructive operation.

3.3 Sequential Firing of Modules

Each module has a number of signals that can be used to track the progress of
the operation. These include:

• the start signal, g, which enables the operation;

• the done signal, d, which prevents multiple executions of the same opera-
tion; and

• a temporary type, usually x′, which is present whenever the operation is
currently executing.

We can design chemical reactions that use the presence and absence of these
signals to determine the current state of each operation. With this in mind, we
design a new module which enables the next statement in the program after the
current statement has completed. Reactions 25–28 implement this module.

a′ab + d
slow−−−→ g′next + d (25)

g′next + a′
fast−−→ a′ (26)

g′next
slow−−−→ gnext (27)

gnext + d
fast−−→ gnext (28)

1. We know that the current operation has completed when the done signal,
dn, is present and the temporary type, x′, is absent. We always preserve
the population of non-absence-indicator types by allowing them to appear
as both a reactant and a product in any reaction in which they are used.
Based on this condition, we generate the pre-reactant for the next start
signal, g′n+1. This is all accomplished by reaction 25.
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2. In the case that we errorenously generated the next start signal, we can
catch it before it becomes the next start signal. (Simulation results show
that absence indicators will occasionally take part in a reaction when the
type they are indicating is actually present.) This is accomplished by
reaction 26.

3. We allow the pre-reactant for the next start signal to become the next
start signal. This is accomplished by reaction 27.

4. We need to reset the module back to its initial state. This is achieved by
removing the done signal, dn, from the system. We know it is safe to do
so when the next start signal has been created. This is accomplished by
reaction 28.

In this way, each module is enabled by its g signal, signals its completion
with the d signal, and automatically enables the next module in the sequence
by asserting the next g signal. In this way, sequential execution of commands
is achieved.

4 Code Parsing

4.1 Language Structure and Tokens

We adopt a subset of the C language for our own use. The following operations
are supported:

• Assignment to variables

– Can source from other variables or constants

– Supports addition and subtraction of multiple variables and constants

• Comparison between multiple variables or variables and constants

– Includes support for “if” and “while” loop types

– Supports all six major comparisons: >, ≥, <, ≤, 6=, and =.
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(s ta r t )

ifwhile } variable

(

variable

= = ,  ! = ,  > = ,  > ,  < = ,  <

variablecons tan t

)

{

=

variablecons tan t

+-

;

variablecons tan t

Figure 1: The tokens and flow of our language.
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4.2 Fundamental Statements

Although our language allows for a wide array of statements, only a small num-
ber of these are directly implementable with chemical modules. All other state-
ments must be modified or broken down into one or more of these fundamental
statements.

• x = 0; (Clear)

• x = x + y; (Copy)

• x = x - y; (Copy)

• x = x + 1; (Increment)

• x = x - 1; (Decrement)

• x = x + x; (Double)

4.3 Mapping of All Statements to Fundamental State-
ments

A total of 59 unique statements are recognized by the compiler. These are shown
in Table 2. Each one of these statements can be parsed in one of 13 ways into
one or more fundamental statements, as shown in table 1.

4.4 If and While loop handling

“if” and “while” loops are implemented via our greater than/equal to zero mod-
ules (where possible) or comparison module. Program flow control determine
which type of loop is used.

5 Mapping Chemical Modules to Parsed Code

After the file has been parsed and all statements have been correctly re-written,
the compiler then links the statements. Each statement is marked with up to
three numbers: its own index, the index of the proceeding statement (and the
index of the statement to skip to in the case of comparison statements, when a
condition is not satisfied).

After this is complete, the compiler simply steps through the statements
line-by-line, creating the set of chemical reactions for each statement based on
the templates described earlier. Each statement gets a computational block of
reactions and a block of control reactions. The computational block implement
the computation itself; the control reactions ensure that the statements are
executed in the correct order.

This is the advantage of our approach: each chemical module is self-contained.
To execute a “line of code,” the only thing that needs to be done is to assert
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Table 1: Statement parsing

1 2 3 4 5
x = 0; x = x + y; x = y; x = y + z; x = x + x;

x = 0; x = x + y; x = 0; x = 0; x = x + x;

x = x + y; x = x + y;

x = x + z;

6 7 8 9 10
x = y + y; x = x + 1; x = y + 1; x = x - 1; x = y - 1;

x = 0; x = x + 1; x = 0; x = x - 1; x = 0;

x = x + y; x = x + y; x = x + y;

x = x + x; x = x + 1; x = x - 1;

11 12 13
x = x - y; x = y - x; x = y - z;

x = x - y; temp1 = 0; x = 0;

temp1 = temp1 + x; x = x + y;

x = 0; x = x - z;

x = x + y;

x = x - temp1;

Table 2: All statements recognized by the compiler.

x = 0; 1 x = c; 3 x = 1 - 0; 3 x = c - x; 12
x = x - x; 1 x = 1; 3 x = y + z; 4 x = 1 - x; 12
x = y - y; 1 x = c + 0; 3 x = y + c; 4 x = y - z; 13
x = c - c; 1 x = 0 + c; 3 x = c + y; 4 x = c - y; 13
x = 0 - 0; 1 x = c + c; 3 x = x + x; 5 x = 1 - y; 13
x = 1 - 1; 1 x = c + k; 3 x = y + y; 6 x = y - c; 13
x = 0 + 0; 1 x = c + 1; 3 x = x + 1; 7 x = x; Warn
x = x + y; 2 x = 1 + c; 3 x = 1 + x; 7 x = x + 0; Warn
x = y + x; 2 x = c - k; 3 x = y + 1; 8 x = x - 0; Warn
x = x + c; 2 x = c - 0; 3 x = 1 + y; 8 x = 0 + x; Warn
x = c + x; 2 x = c - 1; 3 x = x - 1; 9 x = 0 - x; Error
x = y; 3 x = 1 - c; 3 x = y - 1; 10 x = 0 - y; Error

x = y + 0; 3 x = 1 + 0; 3 x = x - y; 11 x = 0 - c; Error
x = 0 + y; 3 x = 0 + 1; 3 x = x - c; 11 x = 0 - 1; Error
x = y - 0; 3 x = 1 + 1; 3 x = y - x; 12
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x  =  1

y  =  1 0

while  (y  > 0)

x  =  x  +  3

t r u e

x =  x  -  4

false

x  =  1

y  =  1 0

if (y > 0)

x  =  x  +  3

t r u e

x =  x  -  4

false

Figure 2: The difference between if and while loops.
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the proper start signal, gn, and wait for the operation to complete. With the
added control blocks, the signals are asserted in the proper order automatically.

Constants are handled by creating another chemical type (basically, creating
another variable) that holds the value of the constant.

Subtraction is handled through a second chemical type, xs to each x:

xs + x
fast−−→ ∅ (29)

For instance, if we want to decrease the value of x by 5, we would copy a
constant of value 5 to xs.

6 Example: Multiplcation

The following loop implements the operation z = x * y;.

x = 10 ;
y = 20 ;
z = 0 ;
whi l e ( x > 0)
{

z = z + y ;
x = x − 1 ;

}

The code is compiled in the following way:

1. The code is read by the compiler, tokenized, and turned into a list of
computer-readable statements. A directed graph, similar to the one shown
in Figure 3.

2. Each statement in the list is broken down into fundamental statements.
In this case, the first three statements, which simply initialize variables,
can be removed; instead, the initial quantity of the corresponding species
is set to these quantities. The remainder of the statements are already
fundamental statements.

3. Each fundamental statement is assigned a chemical block type. A new
directed graph, similar to the one shown in Figure 4 is formed.

4. Each chemical block is assigned an index. This index is used to create
species gn and dn for each chemical block. Chemical reactions are written
according to the templates listed above; the copy and decrement opera-
tions each get an execution block and a control block, whereas the compare
block simply stands alone. In this case, fourty-four chemical reactions are
written.
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x  =  10 ;

y  =  20 ;

z  =  0 ;

while  (x  > 0)

z  =  z  +  y ;

t r u e

Done

false

x  =  x  -  1

Figure 3: Multiply operation, pre-compilation.

Compare  (x  > 0)

Copy y to z

t r u e

Done

false

Decrement  x

Figure 4: Multiply operation, post-compilation.
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7 Simulation Results

7.1 Raise to Power

x = 5 ;
p = 3 ;
y = x ;
d = 0 ;
p = p − 1 ;
whi l e (p > 0) {

w = x ;
whi l e (w > 0) {

d = d + y ;
w = w − 1 ;

}
y = d ;
d = 0 ;
p = p − 1 ;

}

Input statements: 15
Output statements: 15
Reactions: 180

7.2 Square Root

The following code finds the floor of the square root of an input, x, by iteratively
incrementing and squaring y until it finds a square of y that is larger than x.

x = 9 ;
y = 1 ;
ysq = 1 ;
whi l e ( ysq <= x ) {

y = y + 1 ;
ysq = 0 ;
n = y ;
whi l e (n > 0) {

ysq = ysq + y ;
n = n − 1 ;

}
}
y = y − 1 ;

Input statements: 13
Output statements: 15
Reactions: 192
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7.3 Sort

The following code implements a bubble-sort routine, sorting a, b, c, and d.

a = 10 ;
b = 12 ;
c = 9 ;
d = 25 ;
inOrder = 0 ;
whi l e ( inOrder == 0) {

inOrder = 1 ;
i f ( a > b) {

t = a ;
a = b ;
b = t ;
inOrder = 0 ;

}
i f (b > c ) {

t = b ;
b = c ;
c = t ;
inOrder = 0 ;

}
i f ( c > d) {

t = c ;
c = d ;
d = t ;
inOrder = 0 ;

}
}

Input statements: 26
Output statements: 43
Reactions: 504

8 Discussion

This research is intended as a proof-of-concept for the field of chemical com-
pilation. We implement computation based on an imperative programming
paradigm; other paradigms, such as functional programming, may serve as bet-
ter frontends for chemical computation.
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