
Evasive spike variants elucidate the preservation of T cell

immune response to the SARS-CoV-2 omicron variant

Arnav Solanki1, James Cornette2, Julia Udell1,3, George Vasmatzis3, Marc Riedel1*

1 Department of Electrical and Computer Engineering, University of Minnesota,

Twin-Cities, Minnesota, United States

2 Department of Mathematics, Iowa State University, Ames, Iowa, United States

3 Center for Individualized Medicine, Biomarker Discovery Group, Mayo Clinic,

Rochester, Minnesota, United States

* Corresponding author: mriedel@umn.edu

Abstract

The Omicron variants boast the highest infectivity rates among all SARS-CoV-2

variants. Despite their lower disease severity, they can reinfect COVID-19 patients and

infect vaccinated individuals as well. The high number of mutations in these variants

render them resistant to antibodies that otherwise neutralize the spike protein of the

original SARS-CoV-2 spike protein. Recent research has shown that despite its strong

immune evasion, Omicron still induces strong T Cell responses similar to the original

variant. This work investigates the molecular basis for this observation using the neural

network tools NetMHCpan-4.1 and NetMHCiipan-4.0. The antigens presented through

the MHC Class I and Class II pathways from all the notable SARS-CoV-2 variants were

compared across numerous high frequency HLAs. All variants were observed to have

equivalent T cell antigenicity. A novel positive control system was engineered in the

form of spike variants that did evade T Cell responses, unlike Omicron. These evasive

spike proteins were used to statistically confirm that the Omicron variants did not

exhibit lower antigenicity in the MHC pathways. These results suggest that T Cell

October 28, 2022 1/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.04.515139doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515139
http://creativecommons.org/licenses/by/4.0/


immunity mounts a strong defense against COVID-19 which is difficult for SARS-CoV-2

to overcome through mere evolution.

Author summary

1 Introduction

The Omicron variant of SARS-CoV-2 caused the largest wave of COVID-19 infections

from November 2021 to February 2022 [1]. Since then, Omicron has been responsible for

more than 95% of all recorded cases of COVID-19 according to GISAID [2]. It was

observed to have a higher infectivity rate and a lower disease severity than the original

COVID-19 variant [3]. Notably, Omicron could reinfect patients who had already

recovered from COVID-19 and infect people who had received double-doses of

COVID-19 vaccines [3]. These factors had selected for its spread over other

SARS-CoV-2 variants.

COVID-19 vaccines allow treated people to develop immunity against

COVID-19 [4, 5]. The vaccines developed by BioNTech-Pfizer and Moderna-NIAID

employ new mRNA vaccine technology, while those developed by Janseen-Johnson &

Johnson, and Novavax feature previously established methods such as viral vectors and

protein adjuvants. All of these vaccines utilize the novel Spike Glycoprotein of

SARS-CoV-2 to activate a treated person’s immune system [6,7]. They train the

immune system to recognize the spike protein and develop antibodies to neutralize it.

This means that upon COVID-19 infection, a vaccinated individual’s immune system

can mount a stronger and faster defense. Vaccines also allow the body to produce T

cells that kill COVID-19 infected cells through the Major Histocompatibility Complex

(MHC) presentation pathways.

The MHC Class I and Class II pathways allow cells to present antigens derived from

endogenous and exogenous proteins respectively [8]. These antigens are small peptides

that are broken apart from the source protein and then strong bound by the MHC Class

I or Class II proteins. Whenever a MHC protein binds a peptide, the resulting

peptide-MHC complex is transported to the cell exterior such that the peptide can then

be presented to other cells for immune surveillance. This antigen presentation allows for
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CD8+ and CD4+ T cells to identify any cells presenting pathogenic antigens and to

consequently kill those infected cells. Clearly the MHC presentation pathways play a

crucial role in immunity against diseases such as COVID-19.

MHC proteins of different alleles prefer binding different peptides [9]. For example,

HLA-A*0201 prefers binding peptides with hydrophobic residues while HLA-B*2705

prefers binding peptides with hydrophilic residues. MHC Class I proteins also prefer

binding peptides 9 amino acids long while Class II proteins prefer binding peptides of

length 15. Furthermore, the MHC genes are among the most polymorphic genes in the

human genome [10]. Due to all these reasons, the antigens presented from the

SARS-CoV-2 spike protein by the MHC proteins can differ vastly from person to person.

Individuals presenting a higher number of antigens elicit a stronger T Cell response to

COVID-19 infection. Previous studies have concluded that the Omicron Variant is

resistant to numerous monoclonal antibodies used in COVID-19 therapy, and evades

antibodies from infected or vaccinated individuals as well [11–13]. However, T Cell

responses to Omicron are mostly preserved in these individuals, suggesting that most T

Cell epitopes from the original SARS-CoV-2 spike proteins are conserved in

Omicron [14–19]. These observations motivate the importance of T Cell immunity in

COVID-19 cases, as this class of immunity has not been strongly evaded by the

SARS-CoV-2 virus with its new variants.

We sought to investigate the cause of this lack of evasion of T Cell Immunity by the

Omicron variants. For our study, we used NetMHCpan-4.1 and NetMHCiipan-4.0 to

predict MHC Class I and MHC Class II antigens respectively from various spike protein

variants [20]. These are state-of-the-art tools that have been previously been used in

vaccine design and neoantigen identification [21–23]. We used the predictions of these

tools to investigate the antigens derived from the numerous SARS-CoV-2 Variants of

Concern across various MHC alleles with high frequencies in human populations. These

predictions estimated the different T-Cell responses elicited by the variants in most

humans, and confirmed no significant loss of T-Cell epitopes in the Omicron spike

protein. To validate this result, we generated a form of positive control by targeted the

various epitopes we had identified in the spike protein, and deliberately mutated these

regions of the protein to cause a loss of antigens binding to MHC proteins. These

mutant “evading” spike proteins did lose T Cell epitopes across numerous HLAs when
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tested using NetMHCpan-4.1 and NetMHCiipan-4.0, unlike Omicron. These results

prove that the Omicron spike protein lacks mutations that would lead to evasion of T

Cell Immunity. This implies that other stronger selective factors (such as higher

infectivity rate, stronger ACE2 binding, and antibody evasion) played a role in the

evolution of the Omicron variant. Our results reassure that T Cell immunity forms a

strong bastion against SARS-CoV-2, and should remain the focus of COVID-19 therapy.

2 Methods

2.1 SARS-CoV-2 Spike Protein and Variants

The spike protein in the original SARS-CoV-2 virus is a 1273 amino acid long

protein [24, 25], and features a receptor binding domain which allows the virus to infect

human cells through the angiotensin-converting enzyme 2 (ACE2) receptor [26]. Over

the course of the COVID-19 pandemic from 2019 to 2022, the various Variants of

Concern (VOCs) of SARS-Cov-2 reported by WHO evolved their own mutant spike

proteins, with most mutations either stabilizing their spike protein or increasing its

binding affinity with the ACE2 receptor. Clearly, the SARS-CoV-2 spike protein plays a

key role in the COVID-19 viral infection, and consequently it has been the focus of

numerous studies and clinical therapies. Notably, the most widely used COVID-19

vaccines in the United States (such as those manufactured by Pfizer, and Moderna)

encode RNA transcripts for this spike protein, with minor stabilizing mutations. For

our study, we sought to assess the various T-Cell antigens produced from spike protein

variants from VOCs and common vaccines.

To begin, we identified all the key mutations with respect to the original spike

protein in our different variants. For each of our SARS-CoV-2 variants, we recorded the

deletions and point mutations that had a frequency of greater than 33% in all the spike

protein samples for that variant in the GISAID database. We achieved this through the

use of the mutation tracker on outbreak.info [27, 28] and the list of shared mutations on

the covariants website [29]. The mutations we observed across the different variants are

listed below (listed in order of position along the spike protein):

1. B.1.1.7 (Alpha variant): H69del, V70del, Y144del, N501Y, A570D, D614G, P681H,
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T716I, S982A, and D1118H. There were 3 deletions and 7 point mutations.

2. B.1.351 (Beta variant): L18F, D80A, D215G, L241del, L242del, A243del, K417N,

E484K, N501Y, D614G, and A701V. There were 3 deletions and 8 point

mutations. Mutation L18F was not listed on the covariants website.

3. P.1 (Gamma variant): L18F, T20N, P26S, D138Y, R190S, K417T, E484K, N501Y,

D614G, H655Y, T1027I, and V1176F. There were 0 deletions and 12 point

mutations.

4. B.1.617.2 (Delta variant): T19R, T95I, G142D, E156G, F157del, R158del, L452R,

T478K, D614G, P681R, and D950N. There were 2 deletions and 9 point

mutations. Mutations T95I and G142D were not listed on the covariants website.

5. BA.1 (Omicron variant): A67V, H69del, V70del, T95I, G142D, V143del, Y144del,

Y145del, N211I, L212del, G339D, S371L, S373P, S375F, K417N, N440K, G446S,

S477N, T478K, E484A, Q493R, G496S, Q498R, N501Y, Y505H, T547K, D614G,

H655Y, N679K, P681H, N764K, D796Y, N856K, Q954H, N969K, and L981F.

There were 6 deletions and 30 point mutations.

6. BA.2 (“Stealth” Omicron variant): T19I, L24S, P25del, P26del, A27del, G142D,

V213G, G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K,

S477N, T478K, E484A, Q493R, Q498R, N501Y, Y505H, D614G, H655Y, N679K,

P681H, N764K, D796Y, Q954H, and N969K. There were 3 deletions and 28 point

mutations.

The mutations in the newest variants of concern of 2022, i.e. BA.2.75 and BA.5, are

listed in the supplementary data 3.2.3. The majority of the mutations reported in these

Omicron subvariants are also shared by BA.2.

We also tracked the synthetic mutations used in the common COVID-19 vaccines

used in the United States. The vaccines we investigated were:

1. BNT162b2 (Manufactured by BioNTech-Pfizer) and mRNA-1273 (Manufactured

by Moderna-NIAID): These feature the mutations K986P and V987P.

2. Ad26.COV2.S (Manufactured by Janssen-Johnson & Johnson): This features the

mutations R682S, R685G, K986P, and V987P.
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3. NVX-CoV2373 (Manufactured by Novavax): This features the mutations R682Q,

R683Q, R685Q, K986P, and V987P.

With these key mutations compiled, we generated a consensus spike protein sequence

for each variant by performing the corresponding single amino acid deletions or

substitutions on the original spike protein. This statistics-based approach allowed us to

investigate the impact of the core, defining mutations in a variant without relying on a

single, incomplete sample to represent the variant. However this approach did not track

amino acid insertions. For example, several BA.1 variant samples report small insertions

in the N-Terminal Domain [30] but these could not be found in the mutation reporting

data. Given this specific observation, we inserted the 3 amino acids EPE at position 214

in our BA.1 representative spike protein. This was the only insertion we performed in

our analysis.

2.2 MHC-Peptide Binding Affinity Prediction

We used NetMHCpan-4.1 and NetMHCiipan-4.0 to investigate MHC Class I and Class

II antigens respectively. Both of these tools predict the binding probability of a peptide

with a given MHC molecule on a continuous scale of 0 to 1 – 0 means no affinity, and 1

means the strongest binding possible. Both these tools classify strong binding peptides

to a MHC molecule using a 0.5 percentile threshold with respect to the training data for

that MHC. For our MHC Class I analysis, we shortlisted the following HLA serotypes:

A1, A2, A3, A24, A26, A30, B15, B35, B40, B44, and B51. For our MHC Class II

predictions, we focused on DR1, DR3, DR4, DR7, DR8, DR11, DR12, DR13, DR1302,

and DR15. We chose these HLA supertypes in our analysis because they are amongst

the most frequent alleles while also representing a broad and diverse sample of the

human population’s HLA types in the United States [31].

For each of our spike protein variants, we put the fasta-file sequence of the protein

through both prediction tools, and gathered binding data for all the aforementioned

MHC molecules. For MHC Class I predictions, we only analyzed 9mers – contiguous

sequences of 9 amino acids generated from the protein – as they are the strongest

binders for MHC Class I molecules compared to all other peptide lengths. For the same

reason, we also focused on 15mers for MHC Class II molecules. The binding scores
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gathered from this prediction data allowed us to identify the antigens presented by

various MHC molecules from each spike protein.

2.3 Generating Evaders as Positive Controls

In a peptide bound to a MHC protein, the starting and ending amino acids on the chain

are tucked into the MHC’s binding pockets. The remaining peptide chain rests along a

groove exposed on MHC surface, or bulges out if it is longer than can fit in the groove.

Clearly, not every residue on the peptide contributes to its binding affinity with the

MHC molecule. These certain positions on a strong binding peptide that play a crucial

role in binding affinity are called anchor residues. When observing the binding motif of

a particular HLA, i.e. the consensus sequence of all its strong binding peptides, anchor

residues exhibit higher specificity for certain amino acids than the remaining positions

do. Furthermore, different HLA types have different anchor residue preferences, due to

biochemical factors such hydrophobicity, electrostatic interactions, and shape conformity

that play a role in each HLA’s unique binding pocket. For example, A2 prefers binding

9mers with hydrophobic residues (L,V,M, and I) on positions 2 and 9, while B27 prefers

binding 9mers with a simple R on position 2.

As highlighted in section 2.2, we needed to utilize some scientific controls to assess

the significance of the number of predicted antigens being consistent across different

variants. Our approach to resolve this was to design new spike protein variants as a

form of positive control. These spike proteins would feature the same number of

mutations as the most mutated SARS-CoV-2 variant. However, these spike proteins

would be specifically engineered to knock down the number of antigens across multiple

HLA types. Such spike proteins would act as positive controls since they would reflect

the strongest MHC pathway knock down relative to all our tested variants. We termed

such engineered spike proteins as “evaders”. We designed two sets of evaders – one for

the MHC Class I pathway, and the other for Class II.

To design a Class I evader spike protein, we first identified which sites of the original

spike protein to mutate to effectively knock down antigens. We mapped the location of

all strong binding peptides from the original spike protein for each MHC Class I HLA

along the 1273 amino acid sequence. This allowed us to identify regions of antigenicity –
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positions from the original spike protein that constitute peptides that are presented as

antigens in the MHC Class I pathway. From here, we singled out the anchor residues in

these regions of antigenicity. We compiled this information into a set of 11 lists – each

list corresponding to an HLA type, and the numbers in each list representing the

position of anchor residues for that HLA in the original spike protein. To generate the

best evader protein, we needed to mutate these anchor residues. We limited the number

of mutations to 36 (30 point mutations and 6 deletions), i.e. the number of mutations of

BA.1. We also scaled the number of allotted mutations per HLA according to the

number of antigens predicted for that HLA by NetMHCpan-4.1 (see Section 3.1.1).

Therefore we randomly sampled 3, 3, 4, 3, 4, 4, 4, 5, 2, 2, and 2 numbers (a total sum of

36) from the 11 lists respectively. We then randomly mutated the 36 corresponding sites

in the original spike protein to create an evader protein. For the point mutations, we

ensured that the new amino acid substituting each chosen mutation site was

antagonistic to the HLA that was anchored by that site. For example, a residue chosen

for mutation that was originally an anchor residue for A2 binding was only allowed to

mutate to amino acids besides V, L, M, and I. With this procedure we generated a 100

Class I evader proteins.

To design a Class II evader spike protein, we followed the same procedure to identify

anchor residues. In this case, we had 10 lists and we sampled 6, 2, 3, 5, 2, 2, 3, 2, 6, and

5 numbers (again adding up to 36) from each respectively. We then repeated the same

mutation protocol to engineer a 100 Class II evaders.

We repeated the procedure discussed in section 2.2 on the designed evaders to

investigate the antigens predicted from them. We only looked at NetMHCpan-4.1

predictions for the Class I evaders, and NetMHCiipan-4.0 predictions for the Class II

evaders.

2.4 Statistics and Ranking

For each of the 100 Class I evader proteins, we tracked the number of predicted strong

binders by NetMHCpan-4.1 across all the 11 aforementioned HLAs. Here our goal was

to analyze whether the 10 nonrandom variants (i.e. the original spike, the natural

variants, and the vaccine variants) exhibited a different antigen profile compared to the
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evader proteins. To achieve this, we first used the Wilcoxon rank-sum test from the

SciPy library to analyze whether any two sets of spike proteins possessed the same

distribution of antigens. For each of the 11 HLAs, we compared the number of

nonrandom variants’ predicted binders with the evasive variants’ predicted binders.

Furthermore, we tested the BA.1 Omicron variant in comparison to both the

nonrandom set and the evasive set. With the Wilcoxon test, we aimed to highlight that

the set of nonrandom variants reported a different distribution of number of antigens for

an individual HLA than the evasive proteins. Simply put, we tested if the evasive

variants reported a different number of antigens across the various HLAs.

However, this test only investigated the differences between the nonrandom and

evasive variants while focusing on an individual HLA. To understand the significance

across all the HLAs, we utilized 3 different multi-HLA metrics as well. The first metric

was a simple sum – for each variant we added up all the antigens across different HLAs

to track the total number of antigens. This metric was useful for visualizing how many

antigens were being lost over different evaders (the larger the total, the more the

antigens), but was mostly determined by the few HLAs that presented many more

antigens than others. So, we used the cartesian distance between a variant and the

original spike. We treated each variant as a data point with each HLA as a coordinate

and computed the root of the sum of the squares of its difference from the original spike.

The larger the cartesian distance, the more different the antigen profile of a variant from

the original spike. This metric did not scale down different HLAs with greater antigen

variance, so we also developed a third rank metric to merge the multidimensional HLA

data. For each individual HLA, we ranked all the spike proteins (from the 110 total

nonrandom and evasive variants) based on the number of predicted antigens for that

HLA in ascending order. Proteins that shared the same number of binders were

assigned the same average rank. With all 110 proteins being ranked across all 11 HLAs,

we added up the 11 ranks for a single protein into a single sum of ranks score. We

repeated the Wilcoxon rank-sum test on all 3 of these metrics to identify if the antigen

profiles of the nonrandom and evasive variants were distinguishable when considering all

HLAs. Again, we investigated which set Omicron BA.1 matched better with as well.

We repeated the analysis discussed above for the 100 Class II evader proteins across

the 10 Class II HLAs as well.
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3 Results

3.1 MHC Class I

3.1.1 NetMHCpan-4.1 Results on Spike Protein Variants

A1 A2 A3 A24 A26 A30 B15 B35 B40 B44 B51
HLA
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Antigens predicted by NetMHCpan-4.1

Variants
Original
B.1.1.7
B.1.351
P.1
B.1.617.2
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BA.2

Fig 1. MHC Class I antigens predicted from the multiple SARS-CoV-2 variant proteins
by NetMHCpan-4.1. The x-axis tracks the various common Class I HLA types while the
y-axis reports the number of antigens. The results for different variants (from the
original spike to both omicron variants) are shown in different colored bins for each
HLA.
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Fig 2. MHC Class I antigens from the original spike that were preserved in each
variant spike according to NetMHCpan-4.1. For each HLA on the x-axis, the dashed
line represents the number of antigens predicted from the original spike. The different
variants are represented by the different colored bins. Each bin measures how many of
the original spike antigens were conserved in a variant’s predicted set of antigens.

For each of our constructed spike protein variants, the number of antigens as
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predicted by NetMHCpan-4.1 is shown in Fig. 1. The results for the vaccines and the

newer Omicron subvariants are presented in Table 6. For each of the 11 Class I

molecules, these numbers of antigens were mostly unchanged across the different spike

variants (the largest drop was observed for A26 between the original spike protein and

BA.1 – a loss of 3 binders from the original 22, which represents a 13% drop in number

of antigens). That is, no particular variant exhibited a significant knockout of predicted

Class I antigens compared to the original spike protein’s antigens. In particular, the two

Omicron variants did not exhibit a drop in total number of antigens for molecules A1,

A2, A3, A24, A30, and B44. In some cases (namely for A26, B35, and B51) the Alpha,

Beta, and Gamma variants even gained more predicted antigens over the original spike

protein. This suggests that the number of antigens derived from the different spike

proteins for an individual Class I HLA’s predictions is relatively consistent. The

mutations present in newer variants, including Omicron, did not lower the number of

antigens presented by the Class I pathway.

We also investigated the number of original SARS-CoV-2 peptides that were

preserved in the newer variants. That is for each spike variant, we counted the number

of its antigens that were also present in the original spike. These results are shown in

Fig. 2 and Table 7. The two Omicron variants show a drop in the number of antigens

across all HLAs. This means that certain mutations in these variants occur in regions of

antigenicity of the spike protein. However, since the total number of antigens from these

variants is equivalent to the original spike protein’s antigens (see Fig. 1), these

mutations do not knockout the antigenicity of the spike protein. Instead, they merely

alter the antigen footprint of the spike protein variants without actually impacting their

net antigenicity.

3.1.2 NetMHCpan-4.1 Results on Evaders

The numbers of Class I antigens that were predicted by NetMHCpan-4.1 from our set of

a 100 Class I evader proteins are shown in Fig. 3. For each HLA, the number of

antigens counted in both the original spike and the omicron BA.1 spike are also

reported. Furthermore, the mean numbers of antigens from the evaders are also shown.

Clearly for all HLAs, the set of evaders reports a consistently lower number of antigens

compared to both natural spike proteins. These results suggest that the targeted
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Antigens predicted by NetMHCpan-4.1 for Class I Evaders

Fig 3. The number of strong binding peptides from each Class I evader protein
predicted by NetMHCpan-4.1 for all target HLAs. The x-axis represents all 100 evaders
and the y-axis represents the number of antigens. The evader predictions are shown in
the blue line plot, with the mean number of antigens for all evaders in dotted blue. The
number of predicted binders from the original spike is shown in solid yellow, and the
number from Omicron BA.1 is shown in dashed red.

random mutations used to construct the evaders knocked down the antigenicity of the

evader spikes across multiple HLAs. Note that since the 36 targeted mutations in an

evader protein were distributed to lower antigenicity across all HLAs, no complete

knockout of antigens is observed for a single HLA. Instead, a notable (but not complete)

knockdown is observed for all HLAs. In summary, the mutations we sampled

contributed to successful MHC Class I evasion by the evader proteins.
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3.1.3 Statistical Significance

We used the Wilcoxon rank-sum test to quantify how successfully our evaders lowered

antigenicity of their spike proteins. The results for our single HLA tests are shown in

Table 4. For all 11 HLAs, we confirmed that the set of evader proteins and the set of

nonrandom proteins (natural variants and vaccines) formed statistically different

distributions. This suggests that our evaders significantly knocked down antigenicity of

the spike protein for each HLA. Furthermore, for each case the omicron variant

compared more favorably with the nonrandom set than the evader set.

Total
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Multi-HLA Metrics on Class I Evaders

Natural Vaccine Evader
Fig 4. The distribution of the spike protein variants using the total antigens, cartesian
distance, and sum of ranks metrics respectively. All Class I evaders are shown in blue,
all natural SARS-CoV-2 are shown in yellow, and all vaccine spikes are shown in red.
For each metric, the distributions of the evader proteins and the nonrandom (natural
plus vaccine) are notably disparate.

We also investigated 3 different multi-HLA metrics (as discussed in Section 2.4) to

ensure our observations for single HLAs also applied for the entire catalogue of MHC

Class I molecules. The distribution of these metrics for all evaders and nonrandom

proteins is shown in Fig. 4. The first plot shows that the total antigens count, i.e. the

sum of antigens from all tested HLAs, of all the evaders were lower than all nonrandom

proteins. The second plot shows that all evaders had a higher cartesian distance from

the original spike protein’s antigen profile in comparison to the other nonrandom

variants. Lastly, the third plot depicts that all evaders possessed a lower sum of ranks
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score than the nonrandom proteins. All three of these metrics therefore confirm that

the evaders knockdown antigenicity of the spike protein across all tested HLAs

simultaneously. We utilized the Wilcoxon rank-sum test on these metrics and achieved

the same conclusion as the single HLA tests, as shown in Table 1. That is, the Class I

evaders bear mutations that consistently knock down the antigenicity of the spike

protein across a whole catalogue of Class I MHCs. In fact, these evaders achieve these

results while possessing the same number of mutations (36) as Omicron BA.1. Therefore

the mutations seen in Omicron (and all other natural variants discussed in the paper)

do not contribute to evasion of the MHC Class I pathway in one or many HLA alleles.

Table 1. P-values for the Wilcoxon rank-sum test for multi-HLA metrics in
Class I.

Metric Nonrandom vs. Evasive Omicron vs. Nonrandom Omicron vs. Evasive
Total Antigens 2.0 × 10−7 4.2 × 10−1 8.6 × 10−2

Cartesian Distance 2.0 × 10−7 1.5 × 10−1 8.6 × 10−2

Sum of Ranks 2.0 × 10−7 4.2 × 10−1 8.6 × 10−2

3.2 MHC Class II

3.2.1 NetMHCiipan-4.0 Results on Spike Protein Variants

DR1 DR3 DR4 DR7 DR8 DR11 DR12 DR13 DR-
1302

DR15

HLA

0

5

10

15

20

25

Nu
m

be
r

Antigens predicted by NetMHCiipan-4.0

Variants
Original
B.1.1.7
B.1.351
P.1
B.1.617.2
BA.1
BA.2

Fig 5. MHC Class II antigens predicted from the multiple SARS-CoV-2 variant
proteins by NetMHCiipan-4.0. The x-axis tracks the various common Class II HLA
types while the y-axis reports the number of antigens. The results for different variants
are shown in different colored bins for each HLA.

The prediction results of NetMHCiipan-4.0 for all our variants are shown in Fig. 5.

Again, the number of predicted strong binders across different variants is relatively
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Fig 6. MHC Class II antigens from the original spike that were preserved in each
variant spike according to NetMHCpan-4.1. For each HLA on the x-axis, the dashed
line represents the number of antigens predicted from the original spike. The different
variants are represented by the different colored bins. Each bin measures how many of
the original spike antigens were conserved in a variant’s predicted set of antigens.

equivalent for each HLA allele (the largest drop was observed for DR4 between the

original spike protein and B.1.1.7 – a loss of 5 binders from the original 19, which

represents a 26% drop in number of antigens). For DR1, DR8, DR11, DR12, DR13, and

DR1302, the two Omicron variants did not lead to a loss in number of antigens

compared to the original spike protein. In the case of DR11, which bound the least

number of antigens from the original spike at 2, all natural variants (i.e. Alpha through

both Omicrons) did not yield fewer antigens. Thus similarly to the Class I predictions,

the Class II predictions suggest that the mutations occurring in the natural

SARS-CoV-2 variants did not lead to loss of presented antigens compared to the

original spike protein.

Again, we tracked the number of antigens from the original spike that were preserved

in the newer variants. These results are shown in Fig. 6. As was observed in the Class I

results, the newer variants, in particular omicron, have fewer of the original antigens in

several HLAs (such as DR4, DR7 and DR15). However, as the net antigenicity of each

variant was relatively equivalent as seen in Fig. 5, the mutations they carried merely

altered the antigens that were presented and did not lower overall antigenicity.
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Antigens predicted by NetMHCiipan-4.0 for Class II Evaders

Fig 7. The number of strong binding peptides from each Class II evader protein
predicted by NetMHCiipan-4.0 for all target HLAs. The x-axis represents all 100
evaders and the y-axis represents the number of antigens. The evader predictions are
shown in the blue line plot, with the mean across all evaders in dotted blue. The
number of predicted binders from the original spike is shown in solid yellow, and the
number from Omicron BA.1 is shown in dashed red.

3.2.2 NetMHCiipan-4.0 Results on Evaders

NetMHCiipan-4.0’s prediction results on our 100 class II evaders are shown in Fig. 7.

Again, the number of predicted antigens is shown alongside the mean for all evaders and

compared with the number of antigens from the original spike and the Omicron variant.

For all HLAs except DR11, the sets of evaders reported a lower number of antigens than

the Omicron variant. Interestingly, for DR7 and DR13 several of the evaders possessed

October 28, 2022 16/25

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 10, 2022. ; https://doi.org/10.1101/2022.11.04.515139doi: bioRxiv preprint 

https://doi.org/10.1101/2022.11.04.515139
http://creativecommons.org/licenses/by/4.0/


more antigens than Omicron (for DR13, this could be because there were so few antigens

already that it was easier to mutate new DR13 antigens from other HLA mutation sites

in the evaders). Nonetheless, these results point out that the 36 mutations applied in

most evaders led to a drop in antigenicity across all HLAs. Some HLAs, such as DR1,

DR11, and DR13 even reported a complete knockout of antigens in many evaders.

3.2.3 Statistical Significance

The Wilcoxon rank-sum test results for our single class II HLA tests are shown in Table

5. Similarly to the class I results, we confirmed that the set of class II evader proteins

and the set of nonrandom proteins formed statistically different distributions. The only

outlier here was DR11 – we reasoned that the low number of antigens for DR11 by

Omicron contributed to this discrepancy. For all the other HLAs, this suggests that our

evaders significantly knocked down antigenicity of the spike protein. For these cases the

omicron variant compared more favorably with the nonrandom set than the evader set

as well.
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Fig 8. The distribution of the protein variants using the total antigens, cartesian
distance, and sum of ranks metrics respectively. All Class II evaders are shown in blue,
all natural SARS-CoV-2 are shown in yellow, and all vaccine spikes are shown in red.
For each metric, the distributions of the evader proteins and the nonrandom (natural
plus vaccine) are notably disparate.

Again, we investigated 3 different multi-HLA metrics. The distributions of these
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metrics for all evaders and nonrandom proteins is shown in Fig. 8. The first plot shows

that the total antigens count of all the evaders were lower than all nonrandom proteins.

The second plot shows that all evaders had a higher cartesian distance from the original

spike protein’s antigen profile in comparison to the other nonrandom variants. Lastly,

the third plot depicts that all evaders possessed a lower sum of ranks score than the

nonrandom proteins. Again, all three metrics confirm the antigenicity knockdown across

a catalogue of Class II MHc molecules by our evaders. We used the Wilcoxon rank-sum

test on these metrics, as shown in Table 2, and achieved the same conclusion as the

single HLA tests. The Class II evaders, with just 36 mutations from the original spike,

were able to evade the MHC Class II pathway in numerous HLAs. Even in the case of

DR11, the one outlier, our evaders were able to knockout antigens in several instances.

These results suggest that the mutations reported in Omicron do not allow for Class II

evasion.

Table 2. P-values for the Wilcoxon rank-sum test for multi-HLA metrics in
Class II.

Metric Nonrandom vs. Evasive Omicron vs. Nonrandom Omicron vs. Evasive
Total Antigens 2.0 × 10−7 1.5 × 10−1 8.6 × 10−2

Cartesian Distance 2.0 × 10−7 1.5 × 10−1 8.6 × 10−2

Sum of Ranks 2.0 × 10−7 1.5 × 10−1 8.6 × 10−2

Conclusion

T Cells play a vital role in immunity to viral infections. The MHC antigen presentation

pathway allows for identifying more antigens, in particular peptides from the inside of a

viral protein, than antibodies allow. Furthermore, T Cell levels have also been noted to

last longer than antibodies levels for COVID-19 vaccine immunization [?]. As previous

studies and our analysis have shown, T Cell immunity is particularly resilient to the

numerous variants of concern for SARS-CoV-2 [15]. In particular, the two Omicron

variants (BA.1 and BA.2) generated equivalent numbers of antigens in comparison to

the original Wuhan spike protein according to MHC Class I and Class II antigen

prediction models. Despite many peptide antigens from the original spike being lost in

the newer variants, the mutations in these variants did not decrease the number of

antigens across several common HLA types.
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We further corroborated these observations by deliberately knocking out T Cell

antigens out of the spike protein through targeted mutations. Our engineered evasive

spike protein variants, despite being limited to the same number of mutations as

Omicron BA.1, successfully lowered the number of antigens across numerous highly

frequent HLAs. These results suggest that the mutations in the Omicron spike variant

are not selected for T Cell immunity evasion, and are probably more impactful in spike

protein stability or ACE2 receptor binding affinity. This explains why despite the

Omicron variant being capable of neutralizing several pharmaceutical antibodies and

infecting vaccinated patients, it does not evade T Cell immunity obtained by the

common COVID-19 vaccines.
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Supporting information

HLAs investigated We chose the MHC Class I HLA alleles HLA-A*0101 (A1),

HLA-A*0201 (A2), HLA-A*0301 (A3), HLA-A*2402 (A24), HLA-A*2601 (A26),

HLA-A*3001 (A30) HLA-B*1501 (B15),HLA-B*3501 (B35), HLA-B*4001 (B40),

HLA-B*4402 (B44), and HLA-B*5101 (B51).

We chose the MHC Class II HLA alleles HLA-DRB1*0101 (DR1), HLA-DRB1*0301

(DR3), HLA-DRB1*0401 (DR4), HLA-DRB1*0701 (DR7), HLA-DRB1*0801 (DR8),

HLA-DRB1*1101 (DR12), DRB1*1201 (DR12), HLA-DRB1*1301 (DR13),

HLA-DRB1*1302 (DR1302), and HLA-DRB1*1501 (DR15).
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Table 3. Anchor Residue positions identified from strong binding peptides
for all investigated HLAs. The amino acids that were restricted from these
positions (when creating evaders) are also listed.

HLA Anchor Residues Restricted Amino Acids
A1 8 Y
A2 1, 8 L, M, I, V
A3 8 K, R
A24 1 Y, F, W,L
A26 8 Y, F, M
A30 0,2, 8 R, K, V
B15 8 Y, F
B35 1, 8 P, A, Y, F, M
B40 1 E
B44 1 E
B51 1 P, A
DR1 0, 3, 5, 8 F, Y, L, G, A, V, I
DR3 3 D
DR4 0 F, Y, I, L
DR7 0, 3 F, Y, I , L, S, T, V
DR8 5, 8 K, R, D, E
DR11 5 K, R
DR12 0, 3 I, L, V
DR13 5 R, K

DR1302 0, 3 I, F, L, N, D
DR15 3 Y, F

Table 4. P-values for the Wilcoxon rank-sum test for individual HLAs in
Class I. The lower the p-value, the more “separated” the two sets being
compared.

HLA Nonrandom vs. Evasive Omicron vs. Nonrandom Omicron vs. Evasive
A1 4.3 × 10−7 8.7 × 10−1 9.2 × 10−2

A2 2.9 × 10−5 8.7 × 10−1 1.7 × 10−1

A3 2.1 × 10−7 1.5 × 10−1 8.6 × 10−2

A24 1.9 × 10−9 1.5 × 10−1 9.2 × 10−2

A26 7.0 × 10−7 1.5 × 10−1 1.8 × 10−1

A30 7.6 × 10−6 1.5 × 10−1 8.9 × 10−2

B15 3.4 × 10−7 1.5 × 10−1 1.7 × 10−1

B35 2.0 × 10−7 2.6 × 10−1 8.6 × 10−2

B40 2.7 × 10−6 2.0 × 10−1 1.7 × 10−1

B44 1.7 × 10−6 1.5 × 10−1 8.6 × 10−2

B51 1.2 × 10−4 6.3 × 10−1 2.4 × 10−1

New Omicron Subvariants We used the following mutations to define the new

Omicron subvariants:

1. BA.2.75: T19I, L24S, P25del, P26del, A27del, G142D, K147E, W152R, F157L,

I210V, V213G, G257S, G339H, S371F, S373P, S375F, T376A, D405N, R408S,

K417N, N440K, G446S, S477N, T478K, E484A, Q498R, N501Y, Y505H, D614G,

H655Y, N679K, P681H, N764K, D796Y, Q954H, and N969K. There were 3
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Table 5. P-values for the Wilcoxon rank-sum test for individual HLAs in
Class II.

HLA Nonrandom vs. Evasive Omicron vs. Nonrandom Omicron vs. Evasive
DR1 2.9 × 10−3 1.5 × 10−1 1.0 × 10−1

DR3 3.4 × 10−6 7.5 × 10−1 1.0 × 10−1

DR4 3.6 × 10−7 2.6 × 10−1 9.6 × 10−2

DR7 3.1 × 10−5 1.0 × 100 1.6 × 10−1

DR8 1.3 × 10−5 1.5 × 10−1 9.2 × 10−2

DR11 1.1 × 10−1 1.5 × 10−1 1.0 × 10−1

DR12 5.3 × 10−5 2.0 × 10−1 9.2 × 10−2

DR13 1.9 × 10−4 8.7 × 10−1 2.3 × 10−1

DR1302 1.5 × 10−5 2.6 × 10−1 9.9 × 10−2

DR15 9.4 × 10−7 4.2 × 10−1 1.1 × 10−1

deletions and 33 point mutations.

2. BA.5: T19I, L24S, P25del, P26del, A27del, H69del, V70del, G142D, V213G,

G339D, S371F, S373P, S375F, T376A, D405N, R408S, K417N, N440K, L452R,

S477N, T478K, E484A, F486V, Q498R, N501Y, Y505H, D614G, H655Y, N679K,

P681H, N764K, D796Y, Q954H, and N969K. There were 5 deletions and 29 point

mutations.

All of these mutations were observed in more than 33% of all reported samples for that

subvariant.

Table 6. Antigens predicted by NetMHCpan-4.1 for the vaccine and new
Omicron subvariant spikes.

HLA A1 A2 A3 A24 A26 A30 B15 B35 B40 B44 B51
BNT162b2 14 16 18 17 22 18 19 25 8 7 13

Ad26.COV2.S 14 16 18 17 22 17 19 25 8 7 13
NVX-CoV2373 14 16 18 17 22 17 19 25 8 7 13

BA.2.75 15 17 17 17 22 18 19 27 8 7 11
BA.5 15 16 18 18 22 18 19 26 7 7 11

Table 7. Class I Antigens conserved from the Original Spike Protein in the
vaccine and new Omicron subvariant spikes.

HLA A1 A2 A3 A24 A26 A30 B15 B35 B40 B44 B51
BNT162b2 14 16 18 17 22 18 19 25 8 7 12

Ad26.COV2.S 14 16 18 17 22 17 19 25 8 7 12
NVX-CoV2373 14 16 18 17 22 17 19 25 8 7 12

BA.2.75 11 16 16 16 19 15 13 23 7 6 11
BA.5 12 16 16 16 19 16 14 23 7 6 11
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Table 8. Antigens predicted by NetMHCiipan-4.0 for the vaccine and new
Omicron subvariant spikes.

HLA DR1 DR3 DR4 DR7 DR8 DR11 DR12 DR13 DR1302 DR15
BNT162b2 6 13 19 15 8 1 9 3 10 25

Ad26.COV2.S 6 13 23 15 8 1 9 3 10 25
NVX-CoV2373 6 13 23 15 8 1 9 3 10 25

BA.2.75 6 11 18 13 8 3 15 3 12 27
BA.5 6 11 18 13 8 3 15 3 15 24

Table 9. Class II Antigens conserved from the Original Spike Protein in the
vaccine and new Omicron subvariant spikes.

HLA DR1 DR3 DR4 DR7 DR8 DR11 DR12 DR13 DR1302 DR15
BNT162b2 6 13 19 15 8 1 9 3 10 25

Ad26.COV2.S 6 13 19 15 8 1 9 3 10 25
NVX-CoV2373 6 13 19 15 8 1 9 3 10 25

BA.2.75 6 11 18 12 8 1 9 3 5 19
BA.5 6 11 18 12 8 1 9 3 7 16
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