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Acid-base reactions are ubiquitous, easy to prepare, and execute without

sophisticated equipment. Acids and bases are also inherently complementary
and naturally map to a universal representation of “0” and “1.” Here, we pro-
pose how to leverage acids, bases, and their reactions to encode binary
information and perform information processing based upon the majority and
negation operations. These operations form a functionally complete set that
we use to implement more complex computations such as digital circuits and
neural networks. We present the building blocks needed to build complete
digital circuits using acids and bases for dual-rail encoding data values as
complementary pairs, including a set of primitive logic functions that are
widely applicable to molecular computation. We demonstrate how to imple-
ment neural network classifiers and some classes of digital circuits with acid-
base reactions orchestrated by a robotic fluid handling device. We validate the
neural network experimentally on a number of images with different formats,
resulting in a perfect match to the in-silico classifier. Additionally, the simu-
lation of our acid-base classifier matches the results of the in-silico classifier

with approximately 99% similarity.

Semiconductor devices have led the information technology revolu-
tion over the past several decades. However, there are good reasons to
explore alternative methodologies for information storage and data
processing, such as their potential for greater power efficiency, greater
affordability, biological compatibility, and ability to adapt to different
environmental conditions that may be inhospitable to conventional
semiconductor technologies. One interesting research direction is a
molecular computing paradigm'? that relies on chemical reactions,
which can be considerably more space- and energy-efficient than
digital approaches’.

Various methodologies have been proposed for molecular com-
putation. For example, some demonstrations have leveraged chemical
reaction-diffusion processes, often using the Belousov-Zhabotinsky
(BZ) reaction* as a chemical oscillator’. While these oscillators’
dynamics can be used to perform tasks such as classification®, they
incorporate complex spatio-temporal signals rather than stable

endpoints, and they are sensitive to factors such as active sample
mixing and temperature. Other hybrid approaches utilize electronic
actuators to assist in encoding the inputs for reaction initiation®. A
different approach is proposed by Arcadia et al. where they model the
autocatalytic reactions as an activation function used in artificial neural
networks’. They demonstrate an autocatalysis-based digital image
recognition model with the images encoded in the concentration of a
catalyst. In this work, we use acid-base concentration to encode digital
information.

DNA computing has been the most widely studied form of
molecular computing”®™, It relies on DNA strands to carry infor-
mation and execute different logic and arithmetic operations.
Sequence-specific hybridization among networks of DNA sequences
is used to model the algorithm chosen to solve the given problem.
Nevertheless, DNA has limitations such as temperature sensitivity,
long computation times, and the need for large numbers of custom
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reagents and optimizations to perform experimental demonstrations
of computation.

In this work, we use a chemical approach that employs acid-base
reactions as a means for universal computations orchestrated by an
acoustic liquid handler.

The proposed chemical system is straightforward. A mixture of a
strong acid (HX) and a strong base (YOH) can be summarized as
reaching an equilibrium between three reactions:

HX +H,0 — H;0* +X~ Q)
YOH — Y* +OH™ 2)
H,0" +OH™ 22H,0 3)

An interesting property of this simple chemical system is provided
by the neutralization reaction (Eq. (3)), which couples the results of the
acid and base reactions, primarily leaving behind only the more
abundant species. Let x; denote the type of droplet i (e.g., acid or base).
If we consider a mixture of an odd number of n droplets with equal
volume and concentrations, with m of these droplets being acids, then:

if2m>n
ifn>2m,

Acid (= +1)

Base(= —1) “)

Majority(xy, X5, ..., X,) = {

which is analogous to the majority function in Boolean logic.

Importantly, the majority function combined with the inversion
operation form a functionally complete set, which means these
operations are sufficient to model any Boolean logic function.

However, the inversion operator is challenging to realize in che-
mical computation since inversion would require a conditional bis-
table chemical network which can be toggled without knowledge of
the current state. As best we know, there is no simple reaction that
would both change an acid to a base, and change a base to an acid.

To obviate the need for complex reaction networks, we can take
advantage of the symmetry of Equations (1) and (2), and recognize an
opportunity to encode information in the difference between acidic
and basic solutions.

Thus, we propose a dual-rail encoding that represents data values
as complementary pairs, e.g., (acid, base) or (base, acid). An encoded
value will be represented by a concentration of [H3;0"]=x ions
(pH= —logx) in one rail and a concentration of [OH]=x ions
(pH=14.0 — logx) in the complementary rail. Differential encoding
supports the inversion operation by simply exchanging the roles of the
complementary rails during computations. Computations performed
in the dual-rail form conveniently produce both the output and its
logical complement, similar to some common digital structures like
the D Flip-Flop™. Figure 1 illustrates some of the fundamental building
blocks of our methodology.

The concept of complementary representations, such as dual-rail
encoding, has been used to solve relevant problems in other compu-
tational systems™. For example, Jiang et al. used complementary
solutions with different concentrations to represent bits within their
approach®. Similarly, Qian et al. used the notion of complementary
inputs and gates to design seesaw gates'. Our approach extends the
dual-rail information concept to universally relevant acid/base
chemistry.

Results

Encoding data in a dual-rail, acid-base representation
Asillustrated in Fig. 1, our encoding approach represents each bit using
a pair of complementary solutions where the pair (Acid, Base) repre-
sents the value “1” or TRUE, while the pair (Base, Acid) represents the

value “-1” or FALSE. A pair with neutral pH 7 represents the midpoint of
the full scale, which is the boundary between TRUE and FALSE, or the
value “0” when applicable. In some applications, we can further extend
the encoding to a larger set of discrete values by controlling the con-
centration of the encoded values. For example, to build a 3-bit
encoding system with eight possible non-zero values, we can discretize
the data symmetrically into four negative values {-4, -3, -2, -1} and
four positive values {1, 2, 3, 4}. The positive values would be encoded as
(Acid, Base), and the negative values would be encoded as (Base, Acid).

For each data value, we dilute the solution by adding an amount of
water that is equal to:

maximum encoded value
encoded value

Added water volume = (initial volume x ) — initial volume

©)

We make these solutions experimentally by providing an acoustic
liquid handler (Echo 550, Beckman Coulter) with stocks of acids, bases,
and deionized water. Each computational operation involves trans-
porting portions of the input solutions to an output well plate. The role
of the liquid handler is analogous to the wires in an electronic circuit.
As shown in Fig. 1c, for each value in the information sequence being
encoded, if the value is positive, we instruct the liquid handler to dis-
pense an acid droplet followed by a base droplet in the next available
slots in the destination grid. Similarly, if the value is negative, the liquid
handler dispenses a base droplet followed by an acid droplet, instead.
Finally, if the computation involves more discretized values, the liquid
handler dispenses water droplets into the corresponding wells to
dilute the solutions as described in equation (5). Finally, we add a pH
indicator to the final outputs of the computation to read the results. If
the indicator measures an (Acid, Base) pair, this signifies that the
output is TRUE, while a (Base, Acid) pair would indicate FALSE.

Modeling digital circuits using acid-base reactions. As discussed in
the Introduction, when mixed, acids and bases naturally execute the
majority function and inversion can be realized by exchanging the
roles of the complementary pair. Since the majority and inversion
operations are functionally complete”, they can be used to represent
any logic function. Figure 2 depicts primitive AND, OR, INV, NAND, and
NOR logic gates represented in terms of acid-base operations. In order
to avoid neutral pH outputs, all of the building blocks should have an
odd number of inputs. To construct two-input logic gates, the third
input is a constant bias. Table 1 shows the truth table for the AND gate
and the corresponding representation using acid-base reactions with a
dual-rail encoding.

Figure 3 depicts a complete logic circuit for the digital decoder
using acid-base blocks. Figure 3a shows the original logic circuit, while
Fig. 3b shows the corresponding circuit using the equivalent acid-base
logic blocks. Finally, Fig. 4 depicts the implementation of the decoder
circuit using the liquid handler. Figure 4a shows the truth table for the
2-bit decoder circuit, Fig. 4b shows the first level of the circuit that
includes the original input and its complements in addition to acid and
base stocks to be used as biases for the AND gates, and Fig. 4c shows
the final outputs of the circuits after applying the AND gate according
to the circuit design.

One limitation of these acid-base logic gates is that the outputs of
successive cascaded logic stages have progressively more neutral pH
because of the neutralization reaction. Conceptually, one way to
resolve this is to simply replace the intermediate results with fresh acid
or base solutions. For simplicity this is what we assume in logical
simulations; however, it implies interrupting the computation. Other
future alternatives to restore the pH logic levels could include incor-
porating mechanical valves with pH-sensitive materials, which we
highlight in the Discussion.
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Fig. 1| Method overview. a The dual-rail acid-base encoding for an addition fol-
lowed by a subtraction (using the inverted representation). Each “1” is represented
by an acidic solution (on the pH rail) and a basic solution (on the complementary
pHrail); a“~1”is represented by the same solutions in reverse order. b Illustration of
the mapping of discretized inputs into their corresponding pH values.
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¢ Conventional neuron with its default operations. d Equivalent neuron using an
acid-base encoding with analog input values mapped to the corresponding pH
value from the calculated range. Crossing lines indicate multiplying by -1.

e Encoding of a 2 x 3 binary array of pixels into a well plate of acids (yellow) and
bases (blue), where each pixel value is mapped to two wells.
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Fig. 2 | Primitive logic gates represented by acid-base blocks. a AND gate, b OR
gate, ¢ INV gate, d NAND gate, e NOR gate. Each gate with an even number of inputs
requires a third biasing value to implement its function and eliminate neutrality.

The + sign indicates that the input solutions are mixed. The crossing output lines
indicate that an inversion has been performed.
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Table 1| The truth table for the AND gate in digital systems and its corresponding representation in our dual-rail acid-

base method

Digital AND Gate Dual-rail acid-base operation

In1 In2 Out Input 1 Input 2 Bias Output

0 (0] 0 Base/Acid Base/Acid Base/Acid Base/Acid
0 1 0 Base/Acid Acid/Base Base/Acid Base/Acid
1 0 0 Acid/Base Base/Acid Base/Acid Base/Acid
1 1 1 Acid/Base Acid/Base Base/Acid Acid/Base

The first two columns correspond to the input permutations. The following fourth and fifth columns represent the acid-base encoding. The sixth column represents the constant bias input used with
the AND gate. The last columns on either side show the result (output) of mixing the inputs in the acid-base AND gate.
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Fig. 3 | Digital decoder and its equivalent acid-base implementation. a The decoder circuit using digital logic blocks. b The equivalent decoder circuit using acid-base

blocks.

MNIST digit classifier using acid-base reactions. Neural networks are
computing systems that derive relations from available datasets
through weighted sums of input features executed through connected
neurons. Classification is a common task for neural networks to classify
inputs (e.g., hand-written digit image) into a set of classes (e.g., the
corresponding digit number). Additionally, the network is customized
for different conditions, such as (1) The input image format: colored,
grayscale, or black and white. We ran our experiment on black and
white, and 3-bit grayscale images. (2) The type of training weights. We
chose binary weights, which are limited to “1” and “~1,” since we can
readily represent a “1” as a direct transfer of an input and a “-1” as an
inverted transfer that flips our rails in our encoding. We used softmax"”
as an activation function for all our models. Finally, the neural network
is split into two phases: a training phase and an inference phase. The
training phase is a computationally-intensive phase that involves using
a prepared dataset to find optimal weights that generate the desired
labels with high accuracy. The inference phase uses the pre-trained
weights to predict labels for new inputs outside of the dataset. Much
like previous DNA computing demonstrations’*, our work focuses on
using acid-base chemistry to realize the inference phase based on pre-
trained weights, which is the main phase in most practical applications.
The acid-base encoding presented here computes the weighted sum
performed by each neuron by mixing strong acids and bases that
represent the encoded image based on the binary weights of the net-
work. A black pixel is represented by a (Base, Acid) pair, while a white
pixel is represented by an (Acid, Base) pair. Our approach performs the
multiplication by “1” (through a direct liquid transfer without inver-
sion) or by “~1” (through swapping the order of the encoded dual-pair
value during the transfer). The resulting solution is acidic or basic,
which maps to the classification result of the network where (Acid,
Base) pairs represent positive outputs, while (Base, Acid) pairs

represent negative outputs. Additionally, the pH indicator serves as a
nonlinear activation layer that computes the neuron’s output based on
the pH threshold.

We trained a binary neural network consisting of two fully-
connected neurons with the softmax activation function to recognize
images that represent hand-written digits. In our experiments, we
choose images corresponding to the hand-written O and 1 digits from
the MNIST (Modified National Institute of Standards and Technology)
digit classification dataset"”. The pixels of the input image are flattened
sequentially (left to right, and top to bottom) into a 1D vector. A copy
of the 1D vector representation of the image is fed into each neuron.
Figure 5 shows the 2-neuron network for the classification of 8x 8
images into zero or one. After training the weights, we perform our
classification as shown in Fig. 6. Figure 6a shows an example image
from the validation dataset. We start by encoding the image into its
acid-base representation shown in Fig. 6b using the acid-base stock.
We encode the image as many times as the number of neurons (clas-
ses) in our approach (we have two classes/neurons since we are clas-
sifying the digits “0” and “1”). After encoding and applying the weights,
we compute the output from each neuron to decide whether it is a “1”
or “~1.” Finally, as shown in Fig. 6c, for each neuron, we pool (sum) all
of the pH rails of the dual-rail to compute the pH rail of the neuron’s
output, and all of the complementary pH rails of the dual-rail to
compute the complementary pH rail of the neuron’s outputs. We add a
pH indicator to the neuron outputs to determine whether the outputs
are acidic or basic based on their color. A neuron with an output pair
(Acid, Base) indicates that the input image matches the digit this
neuron is supposed to recognize. For instance, the first neuron is
supposed to recognize the digit O, while the second neuron is sup-
posed to recognize the digit 1. In contrast, a neuron with an output pair
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Fig. 4 | Implementation of the 2-Bit Decoder using the liquid handler. a The
truth table for the 2-bit decoder. b The initial acid (yellow) and base (blue) stocks of
the encoded inputs and their complements. ¢ The final output of the acid-base
circuit after applying the AND gate.
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Fig. 5 | Network architecture. Neural network for the classification of 8 x 8 images
into the digits zero or one.

of (Base, Acid) indicates that the input image does not match the digit
this neuron is supposed to recognize.

We ran our model in simulation using various parameters (image
size, discretization levels, and the number of classes) across the full
validation set and calculated the match percentage between our
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Fig. 6 | Classification of the digit “1” using an acid-base network. a The original
16 x 16 image to be classified. b The encoding of the image and inversions using
acids (yellow) and bases (blue). ¢ The final classification output image from the lab
experiment.

experimental reactions and our theoretical pH simulations. Addition-
ally, we picked ten random samples from the validation dataset to
evaluate the model experimentally using the liquid handler. The minor
reduction in accuracy from the acid-base model compared to the in
silico model arises from relying on the pH color indicator for reading
the outputs. We rely on the color to determine the state of each neuron
where (Acid, Base) =+1 and (Base, Acid) =-1; which is sufficient when
the in silico model produces scores that have a positive sign for the
correct label and a negative sign for the wrong label. However, for a
few samples, the in silico model and the acid-base model will generate
matching results, except that all outputs are either (Acid, Base) or
(Base, Acid). However, when we measure the actual pH levels, the
output with the highest concentration always matches the prediction
label from the in silico model. Supplementary Figure 1 shows an 8 x 8
image example that cannot be classified correctly with the acid-base
network; the pixel values for the image are shown in Supplementary
Table 1.

For the first set of results, we ran our experiment using binary
pixel values and two classes using dataset images of sizes 8 x 8,12 x 12,
16 x 16, and 28 x 28. As shown in Table 2, our chemical-based classifier
is able to match theoretical results from the digital network with
99.61% similarity on average across different input sizes. The model’s
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Table 2 | Matching accuracy for 2-class, binary image
classifier

Image size Model accuracy (%) Acid-base net-
work match (%)

8x8 95.45 99.81

12x12 95.59 99.39

16 %16 95.82 99.39

28x28 96.00 99.86

Average 95.72 99.61

Image size, classification accuracy of the digital model, and matching accuracy between the
digital model and the theoretical pH values. Source data are provided as a Source Data file.

Table 3 | Matching accuracy for 2-class, 3-bit image classifier

Image size Model accuracy (%) Acid-base net-
work match (%)

8x8 93.28 97.26

12x12 95.15 99.15

16x16 96.28 99.48

28x28 96.37 99.86

Average 95.27 98.94

Image size, classification accuracy of the digital model, and matching accuracy between the
digital model and the theoretical pH values. Source data are provided as a Source Data file.

Table 4 | Matching accuracy for 3-class, binary image
classifier

Image size Model accuracy (%) Acid-base net-
work match (%)

8x8 95.68 96.12

12x12 95.86 98.82

16x16 96.00 98.82

28x28 96.05 99.62

Average 95.90 98.35

Image size, classification accuracy of the digital model, and matching accuracy between the
digital model and the theoretical pH values. Source data are provided as a Source Data file.

accuracy is calculated over the validation dataset, and it is defined as
the ratio of number of correct classifications to the number of samples
in the validation dataset. The match similarity is calculated over the
validation dataset using pH simulation, and it is defined as the ratio of
the number of of samples where the in silico and acid-base networks
match to the number of samples in the validation dataset.

For the second evaluation, we extended our experiment to clas-
sify 3-bit images (8 grayscale levels) instead of binary values. We use a
network that is similar to the previous experiment but uses 3-bit values
instead of binary ones. We discretized the input pixel values into eight
different integers where each pixel value x is mapped to the integer:
Round(8 x 5t4) — 4. We then utilized the dilution equation explained
before to represent the given integer. We re-trained the network with
the updated representation. The remaining flow matches the previous
experiment. As shown in Table 3, our chemical-based classifier is able
to match the theoretical results from the digital network with 98.94%
similarity on average across different input sizes.

For the final set of results, we extended our experiment by using
three fully connected neurons instead of two to classify binary images
belonging to three different classes/digits ("0”, “1”, and “2”). As shown
in Table 4, our chemical-based classifier is able to match the theoretical
model’s results from the digital network with 98.3% similarity on

average across different input sizes. Supplementary Tables 2-41 give
the weight values for every model used in the evaluation.

Discussion

In this work, we explored the usage of acid-base reactions as a basis for
complex computation orchestrated by a robotic fluid handler to per-
form the encoded reactions. We introduced a dual-rail encoding
method that suits the natural complementarity of acids and bases and
enables our method to support the negation operation, which is
essential for realizing universal computation. We leveraged the fact
that the pH of a strong acid/base system is dominated by whichever
species is more concentrated to realize the majority function in
chemistry.

Our approach presents a system for modeling various computa-
tions without using the complex spatio-temporal encodings presented
in other unconventional computing methods. Furthermore, the reac-
tions enable rapid computation, given the speed of strong acid/base
reactions, without expensive equipment or intricate handling to exe-
cute the operations. Straightforward computation using acid-base
chemistry can provide new ways of interacting with molecular data
storage systems, for example, by interacting with pH-dependent pro-
tection/deprotection groups that could be incorporated into DNA*™®
or small-molecule information'" storage systems.

As an illustration of our approach, we implemented an image
classification neural network using a system of acid-base reactions. We
utilized binary neural networks and binary cross-entropy loss func-
tions to generate complementary outputs compatible with our
method that can be distinguished using a pH indicator. As a result, we
managed to classify the MNIST digits dataset (for two and three digits).
Simulated experiments based on our approach classified images with a
99% accuracy. We also extended our encoding and computational
approach to work with non-binary inputs. Using the dynamic range of
possible concentrations, we can generate more interesting repre-
sentations for our data to support more efficient computations®.

Looking forward, we are investigating the possibilities of other
nonlinear chemistries. This work presented only strong acids/bases,
but incorporating weaker acids and bases as pH buffers” could
introduce nonlinearity, thresholds, and plateaus in the pH curves.
Introducing nonlinear pH operators could produce more complex
primitives, such as activation functions’, which are a critical part of
multilayer neural networks. By developing a cascadable chemical
nonlinear activation function, we would be able to extend our method
to support deep neural networks with multiple hidden layers.

In addition to neural networks, we also presented an approach for
using the acid-base reaction to represent digital logic circuits. We
designed multiple digital logic primitives using the acid-base system
while introducing a third biasing input to the blocks to guarantee a
non-neutral output and the desired functionality.

Since acid-base reactions can be diluted when propagated across
multiple layers or gates, we proposed solving dilution problems by
manually replacing the intermediate results with fresh non-diluted
stocks of acids or bases. However, this step can be automated by
combining with other existing concepts, such as the usage of pH-
sensitive hydrogel valves® to build a restoration mechanism to main-
tain the computation across a longer chain of reactions.

Additionally, digital logic optimization algorithms can be incor-
porated to improve the quality of our approach. For example, we can
optimize the computations to reduce the number of logic layers in the
digital circuit to minimize the dilution that results from cascading
multiple reactions during the computation. Furthermore, our proce-
dures can be incorporated into other binary systems of a similar nat-
ure. For example, the Hadamard transform®™ uses operations
analogous to those employed in this work.

Our dual-rail representation provides a methodology to solve the
challenges of representing negation in chemistry, that can be extended
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beyond acid-base reactions. A complementary representation can
serve as a useful alternative for any computational system that can not
readily negate values. Furthermore, the relationship between the two
(or more) rails does not have to be inverse but rather any desired
relationship hard to realize in a single rail system. For example, the
associated rails can represent such operations as multiplication by a
scalar or a pre-computed trigonometric function.

Methods

Materials and reagents

Hydrochloric Acid (HCI, 36.5-38.0%, Fisher Chemical) and Sodium
Hydroxide (NaOH, >97%, Fisher Chemical) were dissolved using deio-
nized water as a solvent (Millipore Milli-Q) to a concentration of
100 mM. Bromothymol blue (C,7H,gBr,0sS, 0.04%, VWR Chemicals)
was used as an indicator for the pH of the solutions. Deionized water
was made available to the liquid handler for dilution of the reagents in
the 3-bit image neural network classification experiments.

pH simulator

In order to verify our results on the full dataset, an automated pH
simulator was designed to simulate the reaction outcomes for the full
dataset. The simulator predicts the pH by calculating the hydrogen ion
concentration [H'] that results from mixing the two or more aqueous
solutions involved in our computations. The simulator was designed to
directly accept the liquid handler’s programming files to recreate the
liquid handler’s transfers and eliminate related human errors.

Data preparation and network training

The MNIST dataset was used for training the acid-base digit classifier
due to its well-understood properties and clear benchmarks. The
dataset provides 70,000 grayscale hand-written digits ("0”-"9”) of
size 28 x 28 (784 total values, where each value is between 0 and 255).
Data points for the digits “0”, “1”, and “2” were used for the network
including 5923, 6742, and 5958 points for training, and 980, 1135, and
1032 points for validation, respectively. The whole dataset was used
for training and simulation in silico, while a random sample from the
validation dataset was used for the experimental verification as
described in the next section. Each experiment was evaluated using
four different image scales: 8 x8, 12x12, 16 x 16, and 28 x 28. Two
variants were provided for each image: the binary variant where each
pixel was given a value of 1 or -1 based on a threshold of 128 where
pixels of intensity less than 128 were assigned an encoding of (Base,
Acid) while pixels of value greater than or equal to 128 were assigned
an encoding of (Acid, Base), and the 3-bit variants where each pixel
was discretized to a value from {-4, -3, -2, -1, 1, 2, 3, 4} representing
the pixel intensity ranges {0:32, 33:64, 65:96, 97:128,129:160, 161:192,
193:224, 225:256}, respectively. The same processed dataset image
files were also used by the pH simulator to compute the accuracy of
the acid-base experiments by computing the resultant pH after run-
ning each image through our acid-base neural network and com-
paring it to the expected classification. The dataset was split into
training and validation sets according to an 85/15 ratio. The neural
network model was trained with the weight binarization technique by
Courbariaux et al.* to constraint the weights to “+1” and “-1”, as
explained above. A learning rate of 0.001 and a sigmoid activation
function were used to train a neural network consisting of one clas-
sification layer for 30 epochs. In addition, the Binary Cross Entropy
was used as a loss function. After training multiple networks for the
different permutations of the image scale and data scale variants, the
weights were exported into text files to be used to guide our acid-
base experiments.

Experimental verification of the acid-base neural networks
The experiments were conducted using the acoustic liquid handler.
The handler was provided with an initial stock 384-well polypropylene

Table 5 | The run-time in minutes for a single input of the three
experiments: 2-class classification for binary images, 3-class
classification for binary images, and 2-class classification for
3-bit images

Image size 2-class 2-class 3- 3-class
binary image bit image binary image
Encoding Pooling Encoding Pooling Encoding Pooling
8x8 13 min Tmin 13 min Tmin 19 min 2min
12x12 29 min 3min 29 min 3min 44 min 4 min
16x16 52min 5 min 52min 5 min 78 min 8 min
28x28 158 min 16min 158 min 16min  237min 24 min

plate (minimum volume 10 pL, maximum volume 60 pL) that is
manually prepared with rows of acidic solutions (HCI) followed by
rows of basic solutions (NaOH) and then by rows of deionized water.
Each well was filled with 50 pL of the designated solution. The liquid
handler has a maximum deviation of 10% from its target volume. For
the first phase, using the image exported from the processed MNIST
dataset, the liquid handler is programmed to encode the image using a
series of transfers from the initial stock plate into a 1536-well low dead
volume plate (minimum volume 1pL, maximum volume 4 pL). The
process is repeated according to the number of neurons in the neural
network model. For each pixel in the image, if the value is negative and
the neuron weight is +1 or the value is positive, and the neuron weight
is -1, the handler transfers 2.4 pL of basic solution into the first empty
well, followed by 2.4 pL of acidic solution into the next well. Similarly, if
the value is negative and the neuron weight is -1 or the value is posi-
tive, and the neuron weight is +1, the handler transfers 2.4 pL of acidic
solution into the first empty well, followed by 2.4 pL of basic solution
into the next well. Afterward, if more values other than “1” and “-1” are
supported, the handler dispenses quantities of the deionized water, as
described in equation (5), into the corresponding wells in the desti-
nation to dilute the solutions according to their discretized pixel
values.

The final phase is computing the output of each neuron by
pooling the pH and complementary pH rails of each dual-rail pair.
The summation is carried out from the encoded image in the 1536-
well plate back into the 384-well plate. For each neuron, we transfer
200 nL from the pH rail of each pixel’s dual-pair (starting from the
first well, scanning to the end of the neuron wells, and skipping every
second well) into the well assigned to the pH rail of the output of that
neuron. We do the same for the well representing the com-
plementary pH rail of each pixel’s dual pair. The overall time to pool
the neuron outputs was around 5 min. Table 5 gives the breakdown of
the run-time of the two stages of the experiment: image encoding
and result pooling. The shown times are for the three different
experiments presented: 2-class classification of binary images, 3-class
classification of binary images, and 2-class classification of 3-bit
images. The run-time of the experiment depends on the number/
volume of liquid transfers needed to execute the experiment. The
2-class binary Image takes the same amount of time as the 3-bit
grayscale variant since the transferred volumes are equivalent (the
3-bit grayscale variant only substitutes some of the transferred acid/
base with water for dilution). On the other hand, the 3-class variant
has an extra run-time overhead since it requires more liquid transfers
for the extra neuron (the 3-class network has three neurons, com-
pared to two neurons for the 2-class network). Supplementary Fig-
ure 2 shows an illustration of encoding 3-bit grayscale images using
the approach described earlier. The color of each well corresponds to
the pH color shown in Fig. 1b. All the validation datasets with dif-
ferent scale permutations were verified by running through the pH
simulator for theoretical validation (without noise or experimental
errors). We selected ten random images from the validation dataset
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for the real experimental evaluation by the Echo liquid handler as
follows: one 8 x 8 binary image (for the 2-class network), one 8 x 8
binary image (for the 3-class network), one 12 x 12 binary image (for
the 2-class network), one 12 x 12 binary image (for the 3-class net-
work), and two 16 x 16 binary images (for the 2-class network) two
16 x 16 3-bit images (for the 2-class network). Supplementary Figure 3
and Supplementary Movie 1 show a walkthrough of the experiment’s
setup. Additionally, we have performed an experiment of digital
networks on a different platform described in Supplementary Note 1,
Supplementary Fig. 4, and Supplementary Movie 2.

Reading the classification values

The final phase of the experimental validation is reading out the
neuron output. 5pL of the Bromothymol blue pH indicator were
added to the dual-rail output of each neuron; a blue color indicated a
basic solution, while a yellow color indicated an acidic solution. Each
neuron’s dual colors represented its final classification where a neu-
ron’s output of (Acid/Yellow, Base/Blue) indicated it is a “1” (the pre-
dicted classification) while (Base/Blue, Acid/Yellow) indicated it
isa“-1”

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability

The processed MNIST datasets are available at https://doi.org/10.
6084/m9.figshare.21753545.v4”’. Source data are provided with
this paper.

Code availability
The software is available at https://doi.org/10.6084/m9.figshare.
21753551.v4%,
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